Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfvlem2 Structured version   Visualization version   GIF version

Theorem xlimpnfvlem2 42111
Description: Lemma for xlimpnfv 42112: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfvlem2.k 𝑘𝜑
xlimpnfvlem2.j 𝑗𝜑
xlimpnfvlem2.m (𝜑𝑀 ∈ ℤ)
xlimpnfvlem2.z 𝑍 = (ℤ𝑀)
xlimpnfvlem2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimpnfvlem2.g (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
Assertion
Ref Expression
xlimpnfvlem2 (𝜑𝐹~~>*+∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem xlimpnfvlem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 letopon 21807 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21a1i 11 . . . . . 6 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
32elfvexd 6698 . . . . 5 (𝜑 → ℝ* ∈ V)
4 cnex 10612 . . . . . 6 ℂ ∈ V
54a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
6 xlimpnfvlem2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
7 xlimpnfvlem2.z . . . . . . 7 𝑍 = (ℤ𝑀)
87uzsscn2 41747 . . . . . 6 𝑍 ⊆ ℂ
98a1i 11 . . . . 5 (𝜑𝑍 ⊆ ℂ)
10 elpm2r 8418 . . . . 5 (((ℝ* ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℝ*𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℝ*pm ℂ))
113, 5, 6, 9, 10syl22anc 836 . . . 4 (𝜑𝐹 ∈ (ℝ*pm ℂ))
12 pnfxr 10689 . . . . 5 +∞ ∈ ℝ*
1312a1i 11 . . . 4 (𝜑 → +∞ ∈ ℝ*)
14 pnfnei 21822 . . . . . . . 8 ((𝑢 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑢)
1514adantll 712 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑢)
16 xlimpnfvlem2.j . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1911 . . . . . . . . . . . . 13 𝑗 𝑥 ∈ ℝ
1816, 17nfan 1896 . . . . . . . . . . . 12 𝑗(𝜑𝑥 ∈ ℝ)
19 nfv 1911 . . . . . . . . . . . 12 𝑗(𝑥(,]+∞) ⊆ 𝑢
2018, 19nfan 1896 . . . . . . . . . . 11 𝑗((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢)
21 simprr 771 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))) → ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
22 xlimpnfvlem2.k . . . . . . . . . . . . . . . . . 18 𝑘𝜑
23 nfv 1911 . . . . . . . . . . . . . . . . . 18 𝑘 𝑥 ∈ ℝ
2422, 23nfan 1896 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑥 ∈ ℝ)
25 nfv 1911 . . . . . . . . . . . . . . . . 17 𝑘(𝑥(,]+∞) ⊆ 𝑢
2624, 25nfan 1896 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢)
27 nfv 1911 . . . . . . . . . . . . . . . 16 𝑘 𝑗𝑍
2826, 27nfan 1896 . . . . . . . . . . . . . . 15 𝑘(((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍)
297uztrn2 12256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
30293adant1 1126 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
316fdmd 6517 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐹 = 𝑍)
32313ad2ant1 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
3330, 32eleqtrrd 2916 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
3433ad5ant134 1363 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑘 ∈ dom 𝐹)
3534adantl4r 753 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑘 ∈ dom 𝐹)
36 simp-4r 782 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝑥(,]+∞) ⊆ 𝑢)
3736adantl4r 753 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝑥(,]+∞) ⊆ 𝑢)
38 simp-4r 782 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑥 ∈ ℝ)
39 rexr 10681 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑥 ∈ ℝ*)
4112a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → +∞ ∈ ℝ*)
42 simp-4l 781 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝜑)
4329ad4ant23 751 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑘𝑍)
446ffvelrnda 6845 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
4542, 43, 44syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
46 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑥 < (𝐹𝑘))
4763ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
4847, 30ffvelrnd 6846 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
4948pnfged 41743 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ +∞)
5049ad5ant134 1363 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ≤ +∞)
5140, 41, 45, 46, 50eliocd 41776 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ∈ (𝑥(,]+∞))
5251adantl3r 748 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ∈ (𝑥(,]+∞))
5337, 52sseldd 3967 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ∈ 𝑢)
5435, 53jca 514 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
5554ex 415 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑥 < (𝐹𝑘) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5628, 55ralimda 41399 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5756adantrr 715 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))) → (∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5821, 57mpd 15 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
59583impb 1111 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
60 xlimpnfvlem2.g . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
6160r19.21bi 3208 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
6261adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
6320, 59, 62reximdd 41414 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
64 xlimpnfvlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
657rexuz3 14702 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6664, 65syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6766ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6863, 67mpbid 234 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6968rexlimdva2 3287 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7069ad2antrr 724 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ 𝑢) → (∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7115, 70mpd 15 . . . . . 6 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
7271ex 415 . . . . 5 ((𝜑𝑢 ∈ (ordTop‘ ≤ )) → (+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7372ralrimiva 3182 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7411, 13, 733jca 1124 . . 3 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
75 nfcv 2977 . . . 4 𝑘𝐹
7675, 2lmbr3 42021 . . 3 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
7774, 76mpbird 259 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
78 df-xlim 42093 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
7978breqi 5064 . . 3 (𝐹~~>*+∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
8079a1i 11 . 2 (𝜑 → (𝐹~~>*+∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞))
8177, 80mpbird 259 1 (𝜑𝐹~~>*+∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wnf 1780  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  wss 3935   class class class wbr 5058  dom cdm 5549  wf 6345  cfv 6349  (class class class)co 7150  pm cpm 8401  cc 10529  cr 10530  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cz 11975  cuz 12237  (,]cioc 12733  ordTopcordt 16766  TopOnctopon 21512  𝑡clm 21828  ~~>*clsxlim 42092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-z 11976  df-uz 12238  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-topgen 16711  df-ordt 16768  df-ps 17804  df-tsr 17805  df-top 21496  df-topon 21513  df-bases 21548  df-lm 21831  df-xlim 42093
This theorem is referenced by:  xlimpnfv  42112
  Copyright terms: Public domain W3C validator