Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfvlem2 Structured version   Visualization version   GIF version

Theorem xlimpnfvlem2 45835
Description: Lemma for xlimpnfv 45836: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfvlem2.k 𝑘𝜑
xlimpnfvlem2.j 𝑗𝜑
xlimpnfvlem2.m (𝜑𝑀 ∈ ℤ)
xlimpnfvlem2.z 𝑍 = (ℤ𝑀)
xlimpnfvlem2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimpnfvlem2.g (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
Assertion
Ref Expression
xlimpnfvlem2 (𝜑𝐹~~>*+∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem xlimpnfvlem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 letopon 23092 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21a1i 11 . . . . . 6 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
32elfvexd 6897 . . . . 5 (𝜑 → ℝ* ∈ V)
4 cnex 11149 . . . . . 6 ℂ ∈ V
54a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
6 xlimpnfvlem2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
7 xlimpnfvlem2.z . . . . . . 7 𝑍 = (ℤ𝑀)
87uzsscn2 45473 . . . . . 6 𝑍 ⊆ ℂ
98a1i 11 . . . . 5 (𝜑𝑍 ⊆ ℂ)
10 elpm2r 8818 . . . . 5 (((ℝ* ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℝ*𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℝ*pm ℂ))
113, 5, 6, 9, 10syl22anc 838 . . . 4 (𝜑𝐹 ∈ (ℝ*pm ℂ))
12 pnfxr 11228 . . . . 5 +∞ ∈ ℝ*
1312a1i 11 . . . 4 (𝜑 → +∞ ∈ ℝ*)
14 pnfnei 23107 . . . . . . . 8 ((𝑢 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑢)
1514adantll 714 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑢)
16 xlimpnfvlem2.j . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1914 . . . . . . . . . . . . 13 𝑗 𝑥 ∈ ℝ
1816, 17nfan 1899 . . . . . . . . . . . 12 𝑗(𝜑𝑥 ∈ ℝ)
19 nfv 1914 . . . . . . . . . . . 12 𝑗(𝑥(,]+∞) ⊆ 𝑢
2018, 19nfan 1899 . . . . . . . . . . 11 𝑗((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢)
21 simprr 772 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))) → ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
22 xlimpnfvlem2.k . . . . . . . . . . . . . . . . . 18 𝑘𝜑
23 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑘 𝑥 ∈ ℝ
2422, 23nfan 1899 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑥 ∈ ℝ)
25 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑘(𝑥(,]+∞) ⊆ 𝑢
2624, 25nfan 1899 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢)
27 nfv 1914 . . . . . . . . . . . . . . . 16 𝑘 𝑗𝑍
2826, 27nfan 1899 . . . . . . . . . . . . . . 15 𝑘(((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍)
297uztrn2 12812 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
30293adant1 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
316fdmd 6698 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐹 = 𝑍)
32313ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
3330, 32eleqtrrd 2831 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
3433ad5ant134 1369 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑘 ∈ dom 𝐹)
3534adantl4r 755 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑘 ∈ dom 𝐹)
36 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝑥(,]+∞) ⊆ 𝑢)
3736adantl4r 755 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝑥(,]+∞) ⊆ 𝑢)
38 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑥 ∈ ℝ)
39 rexr 11220 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑥 ∈ ℝ*)
4112a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → +∞ ∈ ℝ*)
42 simp-4l 782 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝜑)
4329ad4ant23 753 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑘𝑍)
446ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
4542, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
46 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → 𝑥 < (𝐹𝑘))
4763ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
4847, 30ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
4948pnfged 13091 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ +∞)
5049ad5ant134 1369 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ≤ +∞)
5140, 41, 45, 46, 50eliocd 45505 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ∈ (𝑥(,]+∞))
5251adantl3r 750 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ∈ (𝑥(,]+∞))
5337, 52sseldd 3947 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝐹𝑘) ∈ 𝑢)
5435, 53jca 511 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 < (𝐹𝑘)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
5554ex 412 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑥 < (𝐹𝑘) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5628, 55ralimdaa 3238 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5756adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))) → (∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5821, 57mpd 15 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
59583impb 1114 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
60 xlimpnfvlem2.g . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
6160r19.21bi 3229 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
6261adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
6320, 59, 62reximdd 45142 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
64 xlimpnfvlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
657rexuz3 15315 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6664, 65syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6766ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6863, 67mpbid 232 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6968rexlimdva2 3136 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7069ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ 𝑢) → (∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7115, 70mpd 15 . . . . . 6 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
7271ex 412 . . . . 5 ((𝜑𝑢 ∈ (ordTop‘ ≤ )) → (+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7372ralrimiva 3125 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7411, 13, 733jca 1128 . . 3 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
75 nfcv 2891 . . . 4 𝑘𝐹
7675, 2lmbr3 45745 . . 3 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
7774, 76mpbird 257 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
78 df-xlim 45817 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
7978breqi 5113 . . 3 (𝐹~~>*+∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
8079a1i 11 . 2 (𝜑 → (𝐹~~>*+∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞))
8177, 80mpbird 257 1 (𝜑𝐹~~>*+∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914   class class class wbr 5107  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  pm cpm 8800  cc 11066  cr 11067  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cz 12529  cuz 12793  (,]cioc 13307  ordTopcordt 17462  TopOnctopon 22797  𝑡clm 23113  ~~>*clsxlim 45816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-z 12530  df-uz 12794  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-topgen 17406  df-ordt 17464  df-ps 18525  df-tsr 18526  df-top 22781  df-topon 22798  df-bases 22833  df-lm 23116  df-xlim 45817
This theorem is referenced by:  xlimpnfv  45836
  Copyright terms: Public domain W3C validator