Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfvlem2 Structured version   Visualization version   GIF version

Theorem xlimpnfvlem2 44851
Description: Lemma for xlimpnfv 44852: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfvlem2.k β„²π‘˜πœ‘
xlimpnfvlem2.j β„²π‘—πœ‘
xlimpnfvlem2.m (πœ‘ β†’ 𝑀 ∈ β„€)
xlimpnfvlem2.z 𝑍 = (β„€β‰₯β€˜π‘€)
xlimpnfvlem2.f (πœ‘ β†’ 𝐹:π‘βŸΆβ„*)
xlimpnfvlem2.g (πœ‘ β†’ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜))
Assertion
Ref Expression
xlimpnfvlem2 (πœ‘ β†’ 𝐹~~>*+∞)
Distinct variable groups:   𝑗,𝐹,π‘˜,π‘₯   𝑗,𝑀   𝑗,𝑍,π‘˜   πœ‘,π‘₯
Allowed substitution hints:   πœ‘(𝑗,π‘˜)   𝑀(π‘₯,π‘˜)   𝑍(π‘₯)

Proof of Theorem xlimpnfvlem2
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 letopon 22929 . . . . . . 7 (ordTopβ€˜ ≀ ) ∈ (TopOnβ€˜β„*)
21a1i 11 . . . . . 6 (πœ‘ β†’ (ordTopβ€˜ ≀ ) ∈ (TopOnβ€˜β„*))
32elfvexd 6929 . . . . 5 (πœ‘ β†’ ℝ* ∈ V)
4 cnex 11193 . . . . . 6 β„‚ ∈ V
54a1i 11 . . . . 5 (πœ‘ β†’ β„‚ ∈ V)
6 xlimpnfvlem2.f . . . . 5 (πœ‘ β†’ 𝐹:π‘βŸΆβ„*)
7 xlimpnfvlem2.z . . . . . . 7 𝑍 = (β„€β‰₯β€˜π‘€)
87uzsscn2 44486 . . . . . 6 𝑍 βŠ† β„‚
98a1i 11 . . . . 5 (πœ‘ β†’ 𝑍 βŠ† β„‚)
10 elpm2r 8841 . . . . 5 (((ℝ* ∈ V ∧ β„‚ ∈ V) ∧ (𝐹:π‘βŸΆβ„* ∧ 𝑍 βŠ† β„‚)) β†’ 𝐹 ∈ (ℝ* ↑pm β„‚))
113, 5, 6, 9, 10syl22anc 835 . . . 4 (πœ‘ β†’ 𝐹 ∈ (ℝ* ↑pm β„‚))
12 pnfxr 11272 . . . . 5 +∞ ∈ ℝ*
1312a1i 11 . . . 4 (πœ‘ β†’ +∞ ∈ ℝ*)
14 pnfnei 22944 . . . . . . . 8 ((𝑒 ∈ (ordTopβ€˜ ≀ ) ∧ +∞ ∈ 𝑒) β†’ βˆƒπ‘₯ ∈ ℝ (π‘₯(,]+∞) βŠ† 𝑒)
1514adantll 710 . . . . . . 7 (((πœ‘ ∧ 𝑒 ∈ (ordTopβ€˜ ≀ )) ∧ +∞ ∈ 𝑒) β†’ βˆƒπ‘₯ ∈ ℝ (π‘₯(,]+∞) βŠ† 𝑒)
16 xlimpnfvlem2.j . . . . . . . . . . . . 13 β„²π‘—πœ‘
17 nfv 1915 . . . . . . . . . . . . 13 Ⅎ𝑗 π‘₯ ∈ ℝ
1816, 17nfan 1900 . . . . . . . . . . . 12 Ⅎ𝑗(πœ‘ ∧ π‘₯ ∈ ℝ)
19 nfv 1915 . . . . . . . . . . . 12 Ⅎ𝑗(π‘₯(,]+∞) βŠ† 𝑒
2018, 19nfan 1900 . . . . . . . . . . 11 Ⅎ𝑗((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒)
21 simprr 769 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ (𝑗 ∈ 𝑍 ∧ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜))) β†’ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜))
22 xlimpnfvlem2.k . . . . . . . . . . . . . . . . . 18 β„²π‘˜πœ‘
23 nfv 1915 . . . . . . . . . . . . . . . . . 18 β„²π‘˜ π‘₯ ∈ ℝ
2422, 23nfan 1900 . . . . . . . . . . . . . . . . 17 β„²π‘˜(πœ‘ ∧ π‘₯ ∈ ℝ)
25 nfv 1915 . . . . . . . . . . . . . . . . 17 β„²π‘˜(π‘₯(,]+∞) βŠ† 𝑒
2624, 25nfan 1900 . . . . . . . . . . . . . . . 16 β„²π‘˜((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒)
27 nfv 1915 . . . . . . . . . . . . . . . 16 β„²π‘˜ 𝑗 ∈ 𝑍
2826, 27nfan 1900 . . . . . . . . . . . . . . 15 β„²π‘˜(((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍)
297uztrn2 12845 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ π‘˜ ∈ 𝑍)
30293adant1 1128 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ π‘˜ ∈ 𝑍)
316fdmd 6727 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ dom 𝐹 = 𝑍)
32313ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ dom 𝐹 = 𝑍)
3330, 32eleqtrrd 2834 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ π‘˜ ∈ dom 𝐹)
3433ad5ant134 1365 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ π‘˜ ∈ dom 𝐹)
3534adantl4r 751 . . . . . . . . . . . . . . . . 17 ((((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ π‘˜ ∈ dom 𝐹)
36 simp-4r 780 . . . . . . . . . . . . . . . . . . 19 (((((πœ‘ ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ (π‘₯(,]+∞) βŠ† 𝑒)
3736adantl4r 751 . . . . . . . . . . . . . . . . . 18 ((((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ (π‘₯(,]+∞) βŠ† 𝑒)
38 simp-4r 780 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ π‘₯ ∈ ℝ)
39 rexr 11264 . . . . . . . . . . . . . . . . . . . . 21 (π‘₯ ∈ ℝ β†’ π‘₯ ∈ ℝ*)
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ π‘₯ ∈ ℝ*)
4112a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ +∞ ∈ ℝ*)
42 simp-4l 779 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ πœ‘)
4329ad4ant23 749 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ π‘˜ ∈ 𝑍)
446ffvelcdmda 7085 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ*)
4542, 43, 44syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ (πΉβ€˜π‘˜) ∈ ℝ*)
46 simpr 483 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ π‘₯ < (πΉβ€˜π‘˜))
4763ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((πœ‘ ∧ 𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ 𝐹:π‘βŸΆβ„*)
4847, 30ffvelcdmd 7086 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ 𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ (πΉβ€˜π‘˜) ∈ ℝ*)
4948pnfged 44482 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ 𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ (πΉβ€˜π‘˜) ≀ +∞)
5049ad5ant134 1365 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ (πΉβ€˜π‘˜) ≀ +∞)
5140, 41, 45, 46, 50eliocd 44518 . . . . . . . . . . . . . . . . . . 19 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ (πΉβ€˜π‘˜) ∈ (π‘₯(,]+∞))
5251adantl3r 746 . . . . . . . . . . . . . . . . . 18 ((((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ (πΉβ€˜π‘˜) ∈ (π‘₯(,]+∞))
5337, 52sseldd 3982 . . . . . . . . . . . . . . . . 17 ((((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ (πΉβ€˜π‘˜) ∈ 𝑒)
5435, 53jca 510 . . . . . . . . . . . . . . . 16 ((((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) ∧ π‘₯ < (πΉβ€˜π‘˜)) β†’ (π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))
5554ex 411 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ (π‘₯ < (πΉβ€˜π‘˜) β†’ (π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
5628, 55ralimdaa 3255 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍) β†’ (βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜) β†’ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
5756adantrr 713 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ (𝑗 ∈ 𝑍 ∧ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜))) β†’ (βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜) β†’ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
5821, 57mpd 15 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ (𝑗 ∈ 𝑍 ∧ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜))) β†’ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))
59583impb 1113 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) ∧ 𝑗 ∈ 𝑍 ∧ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜)) β†’ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))
60 xlimpnfvlem2.g . . . . . . . . . . . . 13 (πœ‘ β†’ βˆ€π‘₯ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜))
6160r19.21bi 3246 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜))
6261adantr 479 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)π‘₯ < (πΉβ€˜π‘˜))
6320, 59, 62reximdd 44142 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))
64 xlimpnfvlem2.m . . . . . . . . . . . 12 (πœ‘ β†’ 𝑀 ∈ β„€)
657rexuz3 15299 . . . . . . . . . . . 12 (𝑀 ∈ β„€ β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
6664, 65syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
6766ad2antrr 722 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
6863, 67mpbid 231 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ (π‘₯(,]+∞) βŠ† 𝑒) β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))
6968rexlimdva2 3155 . . . . . . . 8 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ℝ (π‘₯(,]+∞) βŠ† 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
7069ad2antrr 722 . . . . . . 7 (((πœ‘ ∧ 𝑒 ∈ (ordTopβ€˜ ≀ )) ∧ +∞ ∈ 𝑒) β†’ (βˆƒπ‘₯ ∈ ℝ (π‘₯(,]+∞) βŠ† 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
7115, 70mpd 15 . . . . . 6 (((πœ‘ ∧ 𝑒 ∈ (ordTopβ€˜ ≀ )) ∧ +∞ ∈ 𝑒) β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))
7271ex 411 . . . . 5 ((πœ‘ ∧ 𝑒 ∈ (ordTopβ€˜ ≀ )) β†’ (+∞ ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
7372ralrimiva 3144 . . . 4 (πœ‘ β†’ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(+∞ ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
7411, 13, 733jca 1126 . . 3 (πœ‘ β†’ (𝐹 ∈ (ℝ* ↑pm β„‚) ∧ +∞ ∈ ℝ* ∧ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(+∞ ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
75 nfcv 2901 . . . 4 β„²π‘˜πΉ
7675, 2lmbr3 44761 . . 3 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜(ordTopβ€˜ ≀ ))+∞ ↔ (𝐹 ∈ (ℝ* ↑pm β„‚) ∧ +∞ ∈ ℝ* ∧ βˆ€π‘’ ∈ (ordTopβ€˜ ≀ )(+∞ ∈ 𝑒 β†’ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
7774, 76mpbird 256 . 2 (πœ‘ β†’ 𝐹(β‡π‘‘β€˜(ordTopβ€˜ ≀ ))+∞)
78 df-xlim 44833 . . . 4 ~~>* = (β‡π‘‘β€˜(ordTopβ€˜ ≀ ))
7978breqi 5153 . . 3 (𝐹~~>*+∞ ↔ 𝐹(β‡π‘‘β€˜(ordTopβ€˜ ≀ ))+∞)
8079a1i 11 . 2 (πœ‘ β†’ (𝐹~~>*+∞ ↔ 𝐹(β‡π‘‘β€˜(ordTopβ€˜ ≀ ))+∞))
8177, 80mpbird 256 1 (πœ‘ β†’ 𝐹~~>*+∞)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539  β„²wnf 1783   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068  Vcvv 3472   βŠ† wss 3947   class class class wbr 5147  dom cdm 5675  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ↑pm cpm 8823  β„‚cc 11110  β„cr 11111  +∞cpnf 11249  β„*cxr 11251   < clt 11252   ≀ cle 11253  β„€cz 12562  β„€β‰₯cuz 12826  (,]cioc 13329  ordTopcordt 17449  TopOnctopon 22632  β‡π‘‘clm 22950  ~~>*clsxlim 44832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fi 9408  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-z 12563  df-uz 12827  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-topgen 17393  df-ordt 17451  df-ps 18523  df-tsr 18524  df-top 22616  df-topon 22633  df-bases 22669  df-lm 22953  df-xlim 44833
This theorem is referenced by:  xlimpnfv  44852
  Copyright terms: Public domain W3C validator