Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfvlem2 Structured version   Visualization version   GIF version

Theorem xlimmnfvlem2 43003
Description: Lemma for xlimmnf 43011: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfvlem2.k 𝑘𝜑
xlimmnfvlem2.j 𝑗𝜑
xlimmnfvlem2.m (𝜑𝑀 ∈ ℤ)
xlimmnfvlem2.z 𝑍 = (ℤ𝑀)
xlimmnfvlem2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimmnfvlem2.g (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
Assertion
Ref Expression
xlimmnfvlem2 (𝜑𝐹~~>*-∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem xlimmnfvlem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 letopon 22074 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21a1i 11 . . . . . 6 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
32elfvexd 6740 . . . . 5 (𝜑 → ℝ* ∈ V)
4 cnex 10793 . . . . . 6 ℂ ∈ V
54a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
6 xlimmnfvlem2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
7 xlimmnfvlem2.z . . . . . . 7 𝑍 = (ℤ𝑀)
87uzsscn2 42645 . . . . . 6 𝑍 ⊆ ℂ
98a1i 11 . . . . 5 (𝜑𝑍 ⊆ ℂ)
10 elpm2r 8515 . . . . 5 (((ℝ* ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℝ*𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℝ*pm ℂ))
113, 5, 6, 9, 10syl22anc 839 . . . 4 (𝜑𝐹 ∈ (ℝ*pm ℂ))
12 mnfxr 10873 . . . . 5 -∞ ∈ ℝ*
1312a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
14 mnfnei 22090 . . . . . . . 8 ((𝑢 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
1514adantll 714 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
16 xlimmnfvlem2.j . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1922 . . . . . . . . . . . . 13 𝑗 𝑥 ∈ ℝ
1816, 17nfan 1907 . . . . . . . . . . . 12 𝑗(𝜑𝑥 ∈ ℝ)
19 nfv 1922 . . . . . . . . . . . 12 𝑗(-∞[,)𝑥) ⊆ 𝑢
2018, 19nfan 1907 . . . . . . . . . . 11 𝑗((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
21 simprr 773 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
22 xlimmnfvlem2.k . . . . . . . . . . . . . . . . . 18 𝑘𝜑
23 nfv 1922 . . . . . . . . . . . . . . . . . 18 𝑘 𝑥 ∈ ℝ
2422, 23nfan 1907 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑥 ∈ ℝ)
25 nfv 1922 . . . . . . . . . . . . . . . . 17 𝑘(-∞[,)𝑥) ⊆ 𝑢
2624, 25nfan 1907 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
27 nfv 1922 . . . . . . . . . . . . . . . 16 𝑘 𝑗𝑍
2826, 27nfan 1907 . . . . . . . . . . . . . . 15 𝑘(((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍)
297uztrn2 12440 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
30293adant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
316fdmd 6545 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐹 = 𝑍)
32313ad2ant1 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
3330, 32eleqtrrd 2837 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
3433ad5ant134 1369 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
3534adantl4r 755 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
36 simp-4r 784 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3736adantl4r 755 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3812a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ∈ ℝ*)
39 simp-4r 784 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ)
40 rexr 10862 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4139, 40syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ*)
42 simp-4l 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝜑)
4329ad4ant23 753 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘𝑍)
446ffvelrnda 6893 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
4542, 43, 44syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ ℝ*)
4645mnfled 42553 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ≤ (𝐹𝑘))
47 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) < 𝑥)
4838, 41, 45, 46, 47elicod 12968 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
4948adantl3r 750 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
5037, 49sseldd 3892 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ 𝑢)
5135, 50jca 515 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
5251ex 416 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) < 𝑥 → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5328, 52ralimda 3400 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5453adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5521, 54mpd 15 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
56553impb 1117 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
57 xlimmnfvlem2.g . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5857r19.21bi 3123 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5958adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
6020, 56, 59reximdd 42326 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
61 xlimmnfvlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
627rexuz3 14895 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6361, 62syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6463ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6560, 64mpbid 235 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6665rexlimdva2 3199 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6766ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6815, 67mpd 15 . . . . . 6 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6968ex 416 . . . . 5 ((𝜑𝑢 ∈ (ordTop‘ ≤ )) → (-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7069ralrimiva 3098 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7111, 13, 703jca 1130 . . 3 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
72 nfcv 2900 . . . 4 𝑘𝐹
7372, 2lmbr3 42917 . . 3 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
7471, 73mpbird 260 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
75 df-xlim 42989 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
7675breqi 5049 . . 3 (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
7776a1i 11 . 2 (𝜑 → (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞))
7874, 77mpbird 260 1 (𝜑𝐹~~>*-∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wnf 1791  wcel 2110  wral 3054  wrex 3055  Vcvv 3401  wss 3857   class class class wbr 5043  dom cdm 5540  wf 6365  cfv 6369  (class class class)co 7202  pm cpm 8498  cc 10710  cr 10711  -∞cmnf 10848  *cxr 10849   < clt 10850  cle 10851  cz 12159  cuz 12421  [,)cico 12920  ordTopcordt 16976  TopOnctopon 21779  𝑡clm 22095  ~~>*clsxlim 42988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-1o 8191  df-er 8380  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fi 9016  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-z 12160  df-uz 12422  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-topgen 16920  df-ordt 16978  df-ps 18044  df-tsr 18045  df-top 21763  df-topon 21780  df-bases 21815  df-lm 22098  df-xlim 42989
This theorem is referenced by:  xlimmnfv  43004
  Copyright terms: Public domain W3C validator