Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfvlem2 Structured version   Visualization version   GIF version

Theorem xlimmnfvlem2 45848
Description: Lemma for xlimmnf 45856: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfvlem2.k 𝑘𝜑
xlimmnfvlem2.j 𝑗𝜑
xlimmnfvlem2.m (𝜑𝑀 ∈ ℤ)
xlimmnfvlem2.z 𝑍 = (ℤ𝑀)
xlimmnfvlem2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimmnfvlem2.g (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
Assertion
Ref Expression
xlimmnfvlem2 (𝜑𝐹~~>*-∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem xlimmnfvlem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 letopon 23213 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21a1i 11 . . . . . 6 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
32elfvexd 6945 . . . . 5 (𝜑 → ℝ* ∈ V)
4 cnex 11236 . . . . . 6 ℂ ∈ V
54a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
6 xlimmnfvlem2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
7 xlimmnfvlem2.z . . . . . . 7 𝑍 = (ℤ𝑀)
87uzsscn2 45488 . . . . . 6 𝑍 ⊆ ℂ
98a1i 11 . . . . 5 (𝜑𝑍 ⊆ ℂ)
10 elpm2r 8885 . . . . 5 (((ℝ* ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℝ*𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℝ*pm ℂ))
113, 5, 6, 9, 10syl22anc 839 . . . 4 (𝜑𝐹 ∈ (ℝ*pm ℂ))
12 mnfxr 11318 . . . . 5 -∞ ∈ ℝ*
1312a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
14 mnfnei 23229 . . . . . . . 8 ((𝑢 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
1514adantll 714 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
16 xlimmnfvlem2.j . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1914 . . . . . . . . . . . . 13 𝑗 𝑥 ∈ ℝ
1816, 17nfan 1899 . . . . . . . . . . . 12 𝑗(𝜑𝑥 ∈ ℝ)
19 nfv 1914 . . . . . . . . . . . 12 𝑗(-∞[,)𝑥) ⊆ 𝑢
2018, 19nfan 1899 . . . . . . . . . . 11 𝑗((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
21 simprr 773 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
22 xlimmnfvlem2.k . . . . . . . . . . . . . . . . . 18 𝑘𝜑
23 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑘 𝑥 ∈ ℝ
2422, 23nfan 1899 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑥 ∈ ℝ)
25 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑘(-∞[,)𝑥) ⊆ 𝑢
2624, 25nfan 1899 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
27 nfv 1914 . . . . . . . . . . . . . . . 16 𝑘 𝑗𝑍
2826, 27nfan 1899 . . . . . . . . . . . . . . 15 𝑘(((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍)
297uztrn2 12897 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
30293adant1 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
316fdmd 6746 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐹 = 𝑍)
32313ad2ant1 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
3330, 32eleqtrrd 2844 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
3433ad5ant134 1369 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
3534adantl4r 755 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
36 simp-4r 784 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3736adantl4r 755 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3812a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ∈ ℝ*)
39 simp-4r 784 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ)
40 rexr 11307 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4139, 40syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ*)
42 simp-4l 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝜑)
4329ad4ant23 753 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘𝑍)
446ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
4542, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ ℝ*)
4645mnfled 13178 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ≤ (𝐹𝑘))
47 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) < 𝑥)
4838, 41, 45, 46, 47elicod 13437 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
4948adantl3r 750 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
5037, 49sseldd 3984 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ 𝑢)
5135, 50jca 511 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
5251ex 412 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) < 𝑥 → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5328, 52ralimdaa 3260 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5453adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5521, 54mpd 15 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
56553impb 1115 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
57 xlimmnfvlem2.g . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5857r19.21bi 3251 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5958adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
6020, 56, 59reximdd 45153 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
61 xlimmnfvlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
627rexuz3 15387 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6361, 62syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6463ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6560, 64mpbid 232 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6665rexlimdva2 3157 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6766ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6815, 67mpd 15 . . . . . 6 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6968ex 412 . . . . 5 ((𝜑𝑢 ∈ (ordTop‘ ≤ )) → (-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7069ralrimiva 3146 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7111, 13, 703jca 1129 . . 3 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
72 nfcv 2905 . . . 4 𝑘𝐹
7372, 2lmbr3 45762 . . 3 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
7471, 73mpbird 257 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
75 df-xlim 45834 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
7675breqi 5149 . . 3 (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
7776a1i 11 . 2 (𝜑 → (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞))
7874, 77mpbird 257 1 (𝜑𝐹~~>*-∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wnf 1783  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951   class class class wbr 5143  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  pm cpm 8867  cc 11153  cr 11154  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  cz 12613  cuz 12878  [,)cico 13389  ordTopcordt 17544  TopOnctopon 22916  𝑡clm 23234  ~~>*clsxlim 45833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-1o 8506  df-2o 8507  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-z 12614  df-uz 12879  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-topgen 17488  df-ordt 17546  df-ps 18611  df-tsr 18612  df-top 22900  df-topon 22917  df-bases 22953  df-lm 23237  df-xlim 45834
This theorem is referenced by:  xlimmnfv  45849
  Copyright terms: Public domain W3C validator