Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfvlem2 Structured version   Visualization version   GIF version

Theorem xlimmnfvlem2 45789
Description: Lemma for xlimmnf 45797: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfvlem2.k 𝑘𝜑
xlimmnfvlem2.j 𝑗𝜑
xlimmnfvlem2.m (𝜑𝑀 ∈ ℤ)
xlimmnfvlem2.z 𝑍 = (ℤ𝑀)
xlimmnfvlem2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimmnfvlem2.g (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
Assertion
Ref Expression
xlimmnfvlem2 (𝜑𝐹~~>*-∞)
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑍(𝑥)

Proof of Theorem xlimmnfvlem2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 letopon 23229 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21a1i 11 . . . . . 6 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
32elfvexd 6946 . . . . 5 (𝜑 → ℝ* ∈ V)
4 cnex 11234 . . . . . 6 ℂ ∈ V
54a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
6 xlimmnfvlem2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
7 xlimmnfvlem2.z . . . . . . 7 𝑍 = (ℤ𝑀)
87uzsscn2 45428 . . . . . 6 𝑍 ⊆ ℂ
98a1i 11 . . . . 5 (𝜑𝑍 ⊆ ℂ)
10 elpm2r 8884 . . . . 5 (((ℝ* ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℝ*𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℝ*pm ℂ))
113, 5, 6, 9, 10syl22anc 839 . . . 4 (𝜑𝐹 ∈ (ℝ*pm ℂ))
12 mnfxr 11316 . . . . 5 -∞ ∈ ℝ*
1312a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
14 mnfnei 23245 . . . . . . . 8 ((𝑢 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
1514adantll 714 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢)
16 xlimmnfvlem2.j . . . . . . . . . . . . 13 𝑗𝜑
17 nfv 1912 . . . . . . . . . . . . 13 𝑗 𝑥 ∈ ℝ
1816, 17nfan 1897 . . . . . . . . . . . 12 𝑗(𝜑𝑥 ∈ ℝ)
19 nfv 1912 . . . . . . . . . . . 12 𝑗(-∞[,)𝑥) ⊆ 𝑢
2018, 19nfan 1897 . . . . . . . . . . 11 𝑗((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
21 simprr 773 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
22 xlimmnfvlem2.k . . . . . . . . . . . . . . . . . 18 𝑘𝜑
23 nfv 1912 . . . . . . . . . . . . . . . . . 18 𝑘 𝑥 ∈ ℝ
2422, 23nfan 1897 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑥 ∈ ℝ)
25 nfv 1912 . . . . . . . . . . . . . . . . 17 𝑘(-∞[,)𝑥) ⊆ 𝑢
2624, 25nfan 1897 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢)
27 nfv 1912 . . . . . . . . . . . . . . . 16 𝑘 𝑗𝑍
2826, 27nfan 1897 . . . . . . . . . . . . . . 15 𝑘(((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍)
297uztrn2 12895 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
30293adant1 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
316fdmd 6747 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → dom 𝐹 = 𝑍)
32313ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → dom 𝐹 = 𝑍)
3330, 32eleqtrrd 2842 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
3433ad5ant134 1366 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
3534adantl4r 755 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘 ∈ dom 𝐹)
36 simp-4r 784 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3736adantl4r 755 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (-∞[,)𝑥) ⊆ 𝑢)
3812a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ∈ ℝ*)
39 simp-4r 784 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ)
40 rexr 11305 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4139, 40syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑥 ∈ ℝ*)
42 simp-4l 783 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝜑)
4329ad4ant23 753 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → 𝑘𝑍)
446ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
4542, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ ℝ*)
4645mnfled 13175 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → -∞ ≤ (𝐹𝑘))
47 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) < 𝑥)
4838, 41, 45, 46, 47elicod 13434 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
4948adantl3r 750 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ (-∞[,)𝑥))
5037, 49sseldd 3996 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝐹𝑘) ∈ 𝑢)
5135, 50jca 511 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) < 𝑥) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
5251ex 412 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) < 𝑥 → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5328, 52ralimdaa 3258 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5453adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
5521, 54mpd 15 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
56553impb 1114 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
57 xlimmnfvlem2.g . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5857r19.21bi 3249 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
5958adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑥)
6020, 56, 59reximdd 45091 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
61 xlimmnfvlem2.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
627rexuz3 15384 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6361, 62syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6463ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6560, 64mpbid 232 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (-∞[,)𝑥) ⊆ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6665rexlimdva2 3155 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6766ad2antrr 726 . . . . . . 7 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → (∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
6815, 67mpd 15 . . . . . 6 (((𝜑𝑢 ∈ (ordTop‘ ≤ )) ∧ -∞ ∈ 𝑢) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
6968ex 412 . . . . 5 ((𝜑𝑢 ∈ (ordTop‘ ≤ )) → (-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7069ralrimiva 3144 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
7111, 13, 703jca 1127 . . 3 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
72 nfcv 2903 . . . 4 𝑘𝐹
7372, 2lmbr3 45703 . . 3 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ -∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(-∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
7471, 73mpbird 257 . 2 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
75 df-xlim 45775 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
7675breqi 5154 . . 3 (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞)
7776a1i 11 . 2 (𝜑 → (𝐹~~>*-∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))-∞))
7874, 77mpbird 257 1 (𝜑𝐹~~>*-∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wnf 1780  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963   class class class wbr 5148  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  pm cpm 8866  cc 11151  cr 11152  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  cz 12611  cuz 12876  [,)cico 13386  ordTopcordt 17546  TopOnctopon 22932  𝑡clm 23250  ~~>*clsxlim 45774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-1o 8505  df-2o 8506  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-z 12612  df-uz 12877  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-topgen 17490  df-ordt 17548  df-ps 18624  df-tsr 18625  df-top 22916  df-topon 22933  df-bases 22969  df-lm 23253  df-xlim 45775
This theorem is referenced by:  xlimmnfv  45790
  Copyright terms: Public domain W3C validator