| Step | Hyp | Ref
| Expression |
| 1 | | iocpnfordt 23223 |
. . . . . 6
⊢ (𝑋(,]+∞) ∈
(ordTop‘ ≤ ) |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑋(,]+∞) ∈ (ordTop‘ ≤
)) |
| 3 | | xlimpnfvlem1.c |
. . . . . . . 8
⊢ (𝜑 → 𝐹~~>*+∞) |
| 4 | | df-xlim 45834 |
. . . . . . . . 9
⊢ ~~>* =
(⇝𝑡‘(ordTop‘ ≤ )) |
| 5 | 4 | breqi 5149 |
. . . . . . . 8
⊢ (𝐹~~>*+∞ ↔ 𝐹(⇝𝑡‘(ordTop‘
≤ ))+∞) |
| 6 | 3, 5 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 𝐹(⇝𝑡‘(ordTop‘
≤ ))+∞) |
| 7 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑘𝐹 |
| 8 | | letopon 23213 |
. . . . . . . . 9
⊢
(ordTop‘ ≤ ) ∈
(TopOn‘ℝ*) |
| 9 | 8 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (ordTop‘ ≤ )
∈ (TopOn‘ℝ*)) |
| 10 | 7, 9 | lmbr3 45762 |
. . . . . . 7
⊢ (𝜑 → (𝐹(⇝𝑡‘(ordTop‘
≤ ))+∞ ↔ (𝐹 ∈
(ℝ* ↑pm ℂ) ∧ +∞ ∈
ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| 11 | 6, 10 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∈ (ℝ*
↑pm ℂ) ∧ +∞ ∈ ℝ* ∧
∀𝑢 ∈
(ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 12 | 11 | simp3d 1145 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) |
| 13 | 2, 12 | jca 511 |
. . . 4
⊢ (𝜑 → ((𝑋(,]+∞) ∈ (ordTop‘ ≤ )
∧ ∀𝑢 ∈
(ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) |
| 14 | | xlimpnfvlem1.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 15 | 14 | rexrd 11311 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
| 16 | 11 | simp2d 1144 |
. . . . 5
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 17 | 14 | ltpnfd 13163 |
. . . . 5
⊢ (𝜑 → 𝑋 < +∞) |
| 18 | | ubioc1 13440 |
. . . . 5
⊢ ((𝑋 ∈ ℝ*
∧ +∞ ∈ ℝ* ∧ 𝑋 < +∞) → +∞ ∈
(𝑋(,]+∞)) |
| 19 | 15, 16, 17, 18 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → +∞ ∈ (𝑋(,]+∞)) |
| 20 | | eleq2 2830 |
. . . . . 6
⊢ (𝑢 = (𝑋(,]+∞) → (+∞ ∈ 𝑢 ↔ +∞ ∈ (𝑋(,]+∞))) |
| 21 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑢 = (𝑋(,]+∞) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (𝑋(,]+∞))) |
| 22 | 21 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑢 = (𝑋(,]+∞) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞)))) |
| 23 | 22 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑢 = (𝑋(,]+∞) → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞)))) |
| 24 | 23 | rexbidv 3179 |
. . . . . 6
⊢ (𝑢 = (𝑋(,]+∞) → (∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞)))) |
| 25 | 20, 24 | imbi12d 344 |
. . . . 5
⊢ (𝑢 = (𝑋(,]+∞) → ((+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)) ↔ (+∞ ∈ (𝑋(,]+∞) → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞))))) |
| 26 | 25 | rspcva 3620 |
. . . 4
⊢ (((𝑋(,]+∞) ∈
(ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈
𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) → (+∞ ∈ (𝑋(,]+∞) → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞)))) |
| 27 | 13, 19, 26 | sylc 65 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞))) |
| 28 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑗𝜑 |
| 29 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
| 30 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞))) → 𝑋 ∈
ℝ*) |
| 31 | | xlimpnfvlem1.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 32 | 31 | ffdmd 6766 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ*) |
| 33 | 32 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ dom 𝐹) → (𝐹‘𝑘) ∈
ℝ*) |
| 34 | 33 | adantrr 717 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞))) → (𝐹‘𝑘) ∈
ℝ*) |
| 35 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞))) → +∞ ∈
ℝ*) |
| 36 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞))) → (𝐹‘𝑘) ∈ (𝑋(,]+∞)) |
| 37 | 30, 35, 36 | iocgtlbd 45584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞))) → 𝑋 < (𝐹‘𝑘)) |
| 38 | 30, 34, 37 | xrltled 13192 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞))) → 𝑋 ≤ (𝐹‘𝑘)) |
| 39 | 38 | ex 412 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞)) → 𝑋 ≤ (𝐹‘𝑘))) |
| 40 | 39 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞)) → 𝑋 ≤ (𝐹‘𝑘))) |
| 41 | 29, 40 | ralimdaa 3260 |
. . . . 5
⊢ (𝜑 → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞)) → ∀𝑘 ∈
(ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘))) |
| 42 | 41 | a1d 25 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞)) → ∀𝑘 ∈
(ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘)))) |
| 43 | 28, 42 | reximdai 3261 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ (𝑋(,]+∞)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘))) |
| 44 | 27, 43 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘)) |
| 45 | | xlimpnfvlem1.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 46 | | xlimpnfvlem1.z |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 47 | 46 | rexuz3 15387 |
. . 3
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘))) |
| 48 | 45, 47 | syl 17 |
. 2
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘))) |
| 49 | 44, 48 | mpbird 257 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘)) |