Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfvlem1 Structured version   Visualization version   GIF version

Theorem xlimpnfvlem1 42123
Description: Lemma for xlimpnfv 42125: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfvlem1.m (𝜑𝑀 ∈ ℤ)
xlimpnfvlem1.z 𝑍 = (ℤ𝑀)
xlimpnfvlem1.f (𝜑𝐹:𝑍⟶ℝ*)
xlimpnfvlem1.c (𝜑𝐹~~>*+∞)
xlimpnfvlem1.x (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
xlimpnfvlem1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem xlimpnfvlem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 iocpnfordt 21826 . . . . . 6 (𝑋(,]+∞) ∈ (ordTop‘ ≤ )
21a1i 11 . . . . 5 (𝜑 → (𝑋(,]+∞) ∈ (ordTop‘ ≤ ))
3 xlimpnfvlem1.c . . . . . . . 8 (𝜑𝐹~~>*+∞)
4 df-xlim 42106 . . . . . . . . 9 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
54breqi 5075 . . . . . . . 8 (𝐹~~>*+∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
63, 5sylib 220 . . . . . . 7 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
7 nfcv 2980 . . . . . . . 8 𝑘𝐹
8 letopon 21816 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
98a1i 11 . . . . . . . 8 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
107, 9lmbr3 42034 . . . . . . 7 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
116, 10mpbid 234 . . . . . 6 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1211simp3d 1140 . . . . 5 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
132, 12jca 514 . . . 4 (𝜑 → ((𝑋(,]+∞) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
14 xlimpnfvlem1.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
1514rexrd 10694 . . . . 5 (𝜑𝑋 ∈ ℝ*)
1611simp2d 1139 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
1714ltpnfd 12519 . . . . 5 (𝜑𝑋 < +∞)
18 ubioc1 12793 . . . . 5 ((𝑋 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑋 < +∞) → +∞ ∈ (𝑋(,]+∞))
1915, 16, 17, 18syl3anc 1367 . . . 4 (𝜑 → +∞ ∈ (𝑋(,]+∞))
20 eleq2 2904 . . . . . 6 (𝑢 = (𝑋(,]+∞) → (+∞ ∈ 𝑢 ↔ +∞ ∈ (𝑋(,]+∞)))
21 eleq2 2904 . . . . . . . . 9 (𝑢 = (𝑋(,]+∞) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑋(,]+∞)))
2221anbi2d 630 . . . . . . . 8 (𝑢 = (𝑋(,]+∞) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2322ralbidv 3200 . . . . . . 7 (𝑢 = (𝑋(,]+∞) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2423rexbidv 3300 . . . . . 6 (𝑢 = (𝑋(,]+∞) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2520, 24imbi12d 347 . . . . 5 (𝑢 = (𝑋(,]+∞) → ((+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (+∞ ∈ (𝑋(,]+∞) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)))))
2625rspcva 3624 . . . 4 (((𝑋(,]+∞) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (+∞ ∈ (𝑋(,]+∞) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2713, 19, 26sylc 65 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)))
28 nfv 1914 . . . 4 𝑗𝜑
29 nfv 1914 . . . . . 6 𝑘𝜑
3015adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → 𝑋 ∈ ℝ*)
31 xlimpnfvlem1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
3231ffdmd 6540 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℝ*)
3332ffvelrnda 6854 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℝ*)
3433adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → (𝐹𝑘) ∈ ℝ*)
3516adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → +∞ ∈ ℝ*)
36 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → (𝐹𝑘) ∈ (𝑋(,]+∞))
3730, 35, 36iocgtlbd 41853 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → 𝑋 < (𝐹𝑘))
3830, 34, 37xrltled 12546 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → 𝑋 ≤ (𝐹𝑘))
3938ex 415 . . . . . . 7 (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → 𝑋 ≤ (𝐹𝑘)))
4039adantr 483 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → 𝑋 ≤ (𝐹𝑘)))
4129, 40ralimda 41412 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4241a1d 25 . . . 4 (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))))
4328, 42reximdai 3314 . . 3 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4427, 43mpd 15 . 2 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))
45 xlimpnfvlem1.m . . 3 (𝜑𝑀 ∈ ℤ)
46 xlimpnfvlem1.z . . . 4 𝑍 = (ℤ𝑀)
4746rexuz3 14711 . . 3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4845, 47syl 17 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4944, 48mpbird 259 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142   class class class wbr 5069  dom cdm 5558  wf 6354  cfv 6358  (class class class)co 7159  pm cpm 8410  cc 10538  cr 10539  +∞cpnf 10675  *cxr 10677   < clt 10678  cle 10679  cz 11984  cuz 12246  (,]cioc 12742  ordTopcordt 16775  TopOnctopon 21521  𝑡clm 21837  ~~>*clsxlim 42105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-z 11985  df-uz 12247  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-topgen 16720  df-ordt 16777  df-ps 17813  df-tsr 17814  df-top 21505  df-topon 21522  df-bases 21557  df-lm 21840  df-xlim 42106
This theorem is referenced by:  xlimpnfv  42125
  Copyright terms: Public domain W3C validator