| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralralimp | Structured version Visualization version GIF version | ||
| Description: Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| ralralimp | ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 ((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornld 1061 | . . . 4 ⊢ (𝜑 → (((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) |
| 3 | 2 | ralimdv 3156 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 ((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → ∀𝑥 ∈ 𝐴 𝜏)) |
| 4 | rspn0 4336 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜏 → 𝜏)) | |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 𝜏 → 𝜏)) |
| 6 | 3, 5 | syld 47 | 1 ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 ((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ≠ wne 2931 ∀wral 3050 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-ne 2932 df-ral 3051 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |