Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralralimp Structured version   Visualization version   GIF version

Theorem ralralimp 43834
Description: Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.)
Assertion
Ref Expression
ralralimp ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜏,𝑥
Allowed substitution hint:   𝜃(𝑥)

Proof of Theorem ralralimp
StepHypRef Expression
1 ornld 1057 . . . 4 (𝜑 → (((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
21adantr 484 . . 3 ((𝜑𝐴 ≠ ∅) → (((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
32ralimdv 3145 . 2 ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → ∀𝑥𝐴 𝜏))
4 rspn0 4266 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜏𝜏))
54adantl 485 . 2 ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 𝜏𝜏))
63, 5syld 47 1 ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  wne 2987  wral 3106  c0 4243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-ral 3111  df-dif 3884  df-nul 4244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator