Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralralimp Structured version   Visualization version   GIF version

Theorem ralralimp 42884
Description: Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.)
Assertion
Ref Expression
ralralimp ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜏,𝑥
Allowed substitution hint:   𝜃(𝑥)

Proof of Theorem ralralimp
StepHypRef Expression
1 ornld 1042 . . . 4 (𝜑 → (((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
21adantr 473 . . 3 ((𝜑𝐴 ≠ ∅) → (((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
32ralimdv 3128 . 2 ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → ∀𝑥𝐴 𝜏))
4 rspn0 4201 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜏𝜏))
54adantl 474 . 2 ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 𝜏𝜏))
63, 5syld 47 1 ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wo 833  wne 2967  wral 3088  c0 4180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-dif 3834  df-nul 4181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator