| Step | Hyp | Ref
| Expression |
| 1 | | orc 868 |
. . . . 5
⊢ (𝑎 = 𝑑 → (𝑎 = 𝑑 ∨ (∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ∩ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) = ∅)) |
| 2 | 1 | a1d 25 |
. . . 4
⊢ (𝑎 = 𝑑 → ((𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑎 = 𝑑 ∨ (∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ∩ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) = ∅))) |
| 3 | | eliun 4995 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ↔ ∃𝑐 ∈ 𝑊 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉}) |
| 4 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → 𝑎 ∈ 𝑉) |
| 5 | 4 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ 𝑊 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → 𝑎 ∈ 𝑉) |
| 6 | | simprl 771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ 𝑊 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → 𝐵 ∈ 𝑋) |
| 7 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑐 ∈ 𝑊 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → 𝑐 ∈ 𝑊) |
| 8 | | otthg 5490 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋 ∧ 𝑐 ∈ 𝑊) → (〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉 ↔ (𝑎 = 𝑑 ∧ 𝐵 = 𝐵 ∧ 𝑐 = 𝑒))) |
| 9 | 5, 6, 7, 8 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 ∈ 𝑊 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → (〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉 ↔ (𝑎 = 𝑑 ∧ 𝐵 = 𝐵 ∧ 𝑐 = 𝑒))) |
| 10 | | simp1 1137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 = 𝑑 ∧ 𝐵 = 𝐵 ∧ 𝑐 = 𝑒) → 𝑎 = 𝑑) |
| 11 | 9, 10 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐 ∈ 𝑊 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → (〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉 → 𝑎 = 𝑑)) |
| 12 | 11 | con3d 152 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 ∈ 𝑊 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → (¬ 𝑎 = 𝑑 → ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉)) |
| 13 | 12 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ 𝑊 → ((𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (¬ 𝑎 = 𝑑 → ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉))) |
| 14 | 13 | com13 88 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑎 = 𝑑 → ((𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑐 ∈ 𝑊 → ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉))) |
| 15 | 14 | imp31 417 |
. . . . . . . . . . . . . . . . 17
⊢ (((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) ∧ 𝑐 ∈ 𝑊) → ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) ∧ 𝑐 ∈ 𝑊) ∧ 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉}) → ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((¬ 𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) ∧ 𝑐 ∈ 𝑊) ∧ 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉}) ∧ 𝑒 ∈ 𝑊) → ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉) |
| 18 | | velsn 4642 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉} ↔ 𝑠 = 〈𝑎, 𝐵, 𝑐〉) |
| 19 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 〈𝑎, 𝐵, 𝑐〉 → (𝑠 = 〈𝑑, 𝐵, 𝑒〉 ↔ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉)) |
| 20 | 19 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = 〈𝑎, 𝐵, 𝑐〉 → (¬ 𝑠 = 〈𝑑, 𝐵, 𝑒〉 ↔ ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉)) |
| 21 | 18, 20 | sylbi 217 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉} → (¬ 𝑠 = 〈𝑑, 𝐵, 𝑒〉 ↔ ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉)) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) ∧ 𝑐 ∈ 𝑊) ∧ 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉}) → (¬ 𝑠 = 〈𝑑, 𝐵, 𝑒〉 ↔ ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉)) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((¬ 𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) ∧ 𝑐 ∈ 𝑊) ∧ 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉}) ∧ 𝑒 ∈ 𝑊) → (¬ 𝑠 = 〈𝑑, 𝐵, 𝑒〉 ↔ ¬ 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉)) |
| 24 | 17, 23 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢
(((((¬ 𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) ∧ 𝑐 ∈ 𝑊) ∧ 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉}) ∧ 𝑒 ∈ 𝑊) → ¬ 𝑠 = 〈𝑑, 𝐵, 𝑒〉) |
| 25 | | velsn 4642 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {〈𝑑, 𝐵, 𝑒〉} ↔ 𝑠 = 〈𝑑, 𝐵, 𝑒〉) |
| 26 | 24, 25 | sylnibr 329 |
. . . . . . . . . . . . 13
⊢
(((((¬ 𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) ∧ 𝑐 ∈ 𝑊) ∧ 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉}) ∧ 𝑒 ∈ 𝑊) → ¬ 𝑠 ∈ {〈𝑑, 𝐵, 𝑒〉}) |
| 27 | 26 | nrexdv 3149 |
. . . . . . . . . . . 12
⊢ ((((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) ∧ 𝑐 ∈ 𝑊) ∧ 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉}) → ¬ ∃𝑒 ∈ 𝑊 𝑠 ∈ {〈𝑑, 𝐵, 𝑒〉}) |
| 28 | | eliun 4995 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ∪ 𝑒 ∈ 𝑊 {〈𝑑, 𝐵, 𝑒〉} ↔ ∃𝑒 ∈ 𝑊 𝑠 ∈ {〈𝑑, 𝐵, 𝑒〉}) |
| 29 | 27, 28 | sylnibr 329 |
. . . . . . . . . . 11
⊢ ((((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) ∧ 𝑐 ∈ 𝑊) ∧ 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉}) → ¬ 𝑠 ∈ ∪
𝑒 ∈ 𝑊 {〈𝑑, 𝐵, 𝑒〉}) |
| 30 | 29 | rexlimdva2 3157 |
. . . . . . . . . 10
⊢ ((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → (∃𝑐 ∈ 𝑊 𝑠 ∈ {〈𝑎, 𝐵, 𝑐〉} → ¬ 𝑠 ∈ ∪
𝑒 ∈ 𝑊 {〈𝑑, 𝐵, 𝑒〉})) |
| 31 | 3, 30 | biimtrid 242 |
. . . . . . . . 9
⊢ ((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → (𝑠 ∈ ∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} → ¬ 𝑠 ∈ ∪
𝑒 ∈ 𝑊 {〈𝑑, 𝐵, 𝑒〉})) |
| 32 | 31 | ralrimiv 3145 |
. . . . . . . 8
⊢ ((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → ∀𝑠 ∈ ∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ¬ 𝑠 ∈ ∪
𝑒 ∈ 𝑊 {〈𝑑, 𝐵, 𝑒〉}) |
| 33 | | oteq3 4884 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑒 → 〈𝑑, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑒〉) |
| 34 | 33 | sneqd 4638 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑒 → {〈𝑑, 𝐵, 𝑐〉} = {〈𝑑, 𝐵, 𝑒〉}) |
| 35 | 34 | cbviunv 5040 |
. . . . . . . . . . 11
⊢ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉} = ∪
𝑒 ∈ 𝑊 {〈𝑑, 𝐵, 𝑒〉} |
| 36 | 35 | eleq2i 2833 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉} ↔ 𝑠 ∈ ∪
𝑒 ∈ 𝑊 {〈𝑑, 𝐵, 𝑒〉}) |
| 37 | 36 | notbii 320 |
. . . . . . . . 9
⊢ (¬
𝑠 ∈ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉} ↔ ¬ 𝑠 ∈ ∪
𝑒 ∈ 𝑊 {〈𝑑, 𝐵, 𝑒〉}) |
| 38 | 37 | ralbii 3093 |
. . . . . . . 8
⊢
(∀𝑠 ∈
∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ¬ 𝑠 ∈ ∪
𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉} ↔ ∀𝑠 ∈ ∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ¬ 𝑠 ∈ ∪
𝑒 ∈ 𝑊 {〈𝑑, 𝐵, 𝑒〉}) |
| 39 | 32, 38 | sylibr 234 |
. . . . . . 7
⊢ ((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → ∀𝑠 ∈ ∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ¬ 𝑠 ∈ ∪
𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) |
| 40 | | disj 4450 |
. . . . . . 7
⊢
((∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ∩ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) = ∅ ↔ ∀𝑠 ∈ ∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ¬ 𝑠 ∈ ∪
𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) |
| 41 | 39, 40 | sylibr 234 |
. . . . . 6
⊢ ((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → (∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ∩ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) = ∅) |
| 42 | 41 | olcd 875 |
. . . . 5
⊢ ((¬
𝑎 = 𝑑 ∧ (𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉))) → (𝑎 = 𝑑 ∨ (∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ∩ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) = ∅)) |
| 43 | 42 | ex 412 |
. . . 4
⊢ (¬
𝑎 = 𝑑 → ((𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑎 = 𝑑 ∨ (∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ∩ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) = ∅))) |
| 44 | 2, 43 | pm2.61i 182 |
. . 3
⊢ ((𝐵 ∈ 𝑋 ∧ (𝑎 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉)) → (𝑎 = 𝑑 ∨ (∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ∩ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) = ∅)) |
| 45 | 44 | ralrimivva 3202 |
. 2
⊢ (𝐵 ∈ 𝑋 → ∀𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 (𝑎 = 𝑑 ∨ (∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ∩ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) = ∅)) |
| 46 | | oteq1 4882 |
. . . . 5
⊢ (𝑎 = 𝑑 → 〈𝑎, 𝐵, 𝑐〉 = 〈𝑑, 𝐵, 𝑐〉) |
| 47 | 46 | sneqd 4638 |
. . . 4
⊢ (𝑎 = 𝑑 → {〈𝑎, 𝐵, 𝑐〉} = {〈𝑑, 𝐵, 𝑐〉}) |
| 48 | 47 | iuneq2d 5022 |
. . 3
⊢ (𝑎 = 𝑑 → ∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} = ∪
𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) |
| 49 | 48 | disjor 5125 |
. 2
⊢
(Disj 𝑎
∈ 𝑉 ∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ↔ ∀𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 (𝑎 = 𝑑 ∨ (∪
𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉} ∩ ∪ 𝑐 ∈ 𝑊 {〈𝑑, 𝐵, 𝑐〉}) = ∅)) |
| 50 | 45, 49 | sylibr 234 |
1
⊢ (𝐵 ∈ 𝑋 → Disj 𝑎 ∈ 𝑉 ∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉}) |