Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelbrnelim Structured version   Visualization version   GIF version

Theorem nelbrnelim 47247
Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
nelbrnelim (𝐴 _∉ 𝐵𝐴𝐵)

Proof of Theorem nelbrnelim
StepHypRef Expression
1 nelbrim 47245 . 2 (𝐴 _∉ 𝐵 → ¬ 𝐴𝐵)
2 df-nel 3036 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
31, 2sylibr 234 1 (𝐴 _∉ 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  wnel 3035   class class class wbr 5123   _∉ cnelbr 47241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-nelbr 47242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator