Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelbrnelim Structured version   Visualization version   GIF version

Theorem nelbrnelim 44769
Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
nelbrnelim (𝐴 _∉ 𝐵𝐴𝐵)

Proof of Theorem nelbrnelim
StepHypRef Expression
1 nelbrim 44767 . 2 (𝐴 _∉ 𝐵 → ¬ 𝐴𝐵)
2 df-nel 3050 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
31, 2sylibr 233 1 (𝐴 _∉ 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  wnel 3049   class class class wbr 5074   _∉ cnelbr 44763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-nelbr 44764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator