| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelbrnelim | Structured version Visualization version GIF version | ||
| Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021.) |
| Ref | Expression |
|---|---|
| nelbrnelim | ⊢ (𝐴 _∉ 𝐵 → 𝐴 ∉ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelbrim 47245 | . 2 ⊢ (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵) | |
| 2 | df-nel 3036 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝐴 _∉ 𝐵 → 𝐴 ∉ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 ∉ wnel 3035 class class class wbr 5123 _∉ cnelbr 47241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-nelbr 47242 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |