| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelbrnelim | Structured version Visualization version GIF version | ||
| Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021.) |
| Ref | Expression |
|---|---|
| nelbrnelim | ⊢ (𝐴 _∉ 𝐵 → 𝐴 ∉ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelbrim 47246 | . 2 ⊢ (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵) | |
| 2 | df-nel 3032 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝐴 _∉ 𝐵 → 𝐴 ∉ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∉ wnel 3031 class class class wbr 5115 _∉ cnelbr 47242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nel 3032 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-xp 5652 df-rel 5653 df-nelbr 47243 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |