MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspn0 Structured version   Visualization version   GIF version

Theorem rspn0 4283
Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018.) Avoid ax-10 2139, ax-12 2173. (Revised by Gino Giotto, 28-Jun-2024.)
Assertion
Ref Expression
rspn0 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem rspn0
StepHypRef Expression
1 n0 4277 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 df-ral 3068 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
3 exim 1837 . . . 4 (∀𝑥(𝑥𝐴𝜑) → (∃𝑥 𝑥𝐴 → ∃𝑥𝜑))
4 ax5e 1916 . . . 4 (∃𝑥𝜑𝜑)
53, 4syl6com 37 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥(𝑥𝐴𝜑) → 𝜑))
62, 5syl5bi 241 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑𝜑))
71, 6sylbi 216 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  wcel 2108  wne 2942  wral 3063  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-ne 2943  df-ral 3068  df-dif 3886  df-nul 4254
This theorem is referenced by:  hashge2el2dif  14122  rmodislmodlem  20105  rmodislmod  20106  rmodislmodOLD  20107  scmatf1  21588  fusgrregdegfi  27839  rusgr1vtxlem  27857  upgrewlkle2  27876  zarclsiin  31723  ralralimp  44657
  Copyright terms: Public domain W3C validator