MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspn0 Structured version   Visualization version   GIF version

Theorem rspn0 4315
Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018.)
Assertion
Ref Expression
rspn0 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem rspn0
StepHypRef Expression
1 n0 4312 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 nfra1 3221 . . . 4 𝑥𝑥𝐴 𝜑
3 nfv 1915 . . . 4 𝑥𝜑
42, 3nfim 1897 . . 3 𝑥(∀𝑥𝐴 𝜑𝜑)
5 rsp 3207 . . . 4 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
65com12 32 . . 3 (𝑥𝐴 → (∀𝑥𝐴 𝜑𝜑))
74, 6exlimi 2217 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑𝜑))
81, 7sylbi 219 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2114  wne 3018  wral 3140  c0 4293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-dif 3941  df-nul 4294
This theorem is referenced by:  hashge2el2dif  13841  rmodislmodlem  19703  rmodislmod  19704  scmatf1  21142  fusgrregdegfi  27353  rusgr1vtxlem  27371  upgrewlkle2  27390  ralralimp  43484
  Copyright terms: Public domain W3C validator