MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspn0 Structured version   Visualization version   GIF version

Theorem rspn0 4315
Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 28-Jun-2024.)
Assertion
Ref Expression
rspn0 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem rspn0
StepHypRef Expression
1 n0 4312 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 df-ral 3045 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
3 exim 1834 . . . 4 (∀𝑥(𝑥𝐴𝜑) → (∃𝑥 𝑥𝐴 → ∃𝑥𝜑))
4 ax5e 1912 . . . 4 (∃𝑥𝜑𝜑)
53, 4syl6com 37 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥(𝑥𝐴𝜑) → 𝜑))
62, 5biimtrid 242 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑𝜑))
71, 6sylbi 217 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779  wcel 2109  wne 2925  wral 3044  c0 4292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-ne 2926  df-ral 3045  df-dif 3914  df-nul 4293
This theorem is referenced by:  hashge2el2dif  14421  rmodislmodlem  20811  rmodislmod  20812  scmatf1  22394  fusgrregdegfi  29473  rusgr1vtxlem  29491  upgrewlkle2  29510  zarclsiin  33834  ralralimp  47252
  Copyright terms: Public domain W3C validator