Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspn0 | Structured version Visualization version GIF version |
Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018.) Avoid ax-10 2139, ax-12 2173. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
rspn0 | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4277 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
3 | exim 1837 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥𝜑)) | |
4 | ax5e 1916 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
5 | 3, 4 | syl6com 37 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → 𝜑)) |
6 | 2, 5 | syl5bi 241 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ne 2943 df-ral 3068 df-dif 3886 df-nul 4254 |
This theorem is referenced by: hashge2el2dif 14122 rmodislmodlem 20105 rmodislmod 20106 rmodislmodOLD 20107 scmatf1 21588 fusgrregdegfi 27839 rusgr1vtxlem 27857 upgrewlkle2 27876 zarclsiin 31723 ralralimp 44657 |
Copyright terms: Public domain | W3C validator |