MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspn0 Structured version   Visualization version   GIF version

Theorem rspn0 4286
Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 28-Jun-2024.)
Assertion
Ref Expression
rspn0 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem rspn0
StepHypRef Expression
1 n0 4280 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 df-ral 3069 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
3 exim 1836 . . . 4 (∀𝑥(𝑥𝐴𝜑) → (∃𝑥 𝑥𝐴 → ∃𝑥𝜑))
4 ax5e 1915 . . . 4 (∃𝑥𝜑𝜑)
53, 4syl6com 37 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥(𝑥𝐴𝜑) → 𝜑))
62, 5syl5bi 241 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑𝜑))
71, 6sylbi 216 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1782  wcel 2106  wne 2943  wral 3064  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-ne 2944  df-ral 3069  df-dif 3890  df-nul 4257
This theorem is referenced by:  hashge2el2dif  14194  rmodislmodlem  20190  rmodislmod  20191  rmodislmodOLD  20192  scmatf1  21680  fusgrregdegfi  27936  rusgr1vtxlem  27954  upgrewlkle2  27973  zarclsiin  31821  ralralimp  44770
  Copyright terms: Public domain W3C validator