MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeanlem Structured version   Visualization version   GIF version

Theorem reeanlem 3290
Description: Lemma factoring out common proof steps of reeanv 3292 and reean 3291. (Contributed by Wolf Lammen, 20-Aug-2023.)
Hypothesis
Ref Expression
reeanlem.1 (∃𝑥𝑦((𝑥𝐴𝜑) ∧ (𝑦𝐵𝜓)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦(𝑦𝐵𝜓)))
Assertion
Ref Expression
reeanlem (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem reeanlem
StepHypRef Expression
1 an4 652 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) ∧ (𝑦𝐵𝜓)))
212exbii 1852 . . 3 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝜑𝜓)) ↔ ∃𝑥𝑦((𝑥𝐴𝜑) ∧ (𝑦𝐵𝜓)))
3 reeanlem.1 . . 3 (∃𝑥𝑦((𝑥𝐴𝜑) ∧ (𝑦𝐵𝜓)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦(𝑦𝐵𝜓)))
42, 3bitri 274 . 2 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝜑𝜓)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦(𝑦𝐵𝜓)))
5 r2ex 3231 . 2 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝜑𝜓)))
6 df-rex 3069 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
7 df-rex 3069 . . 3 (∃𝑦𝐵 𝜓 ↔ ∃𝑦(𝑦𝐵𝜓))
86, 7anbi12i 626 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦(𝑦𝐵𝜓)))
94, 5, 83bitr4i 302 1 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by:  reean  3291  reeanv  3292
  Copyright terms: Public domain W3C validator