Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reeanv | Structured version Visualization version GIF version |
Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistrv 1960 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) | |
2 | 1 | reeanlem 3293 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2107 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3070 df-rex 3071 |
This theorem is referenced by: 3reeanv 3296 2ralorOLD 3298 2reu4lem 4457 disjxiun 5072 fliftfun 7192 frrlem9 8119 tfrlem5 8220 uniinqs 8595 eroveu 8610 erovlem 8611 xpf1o 8935 unxpdomlem3 9038 unfiOLD 9090 finsschain 9135 dffi3 9199 ttrcltr 9483 rankxplim3 9648 xpnum 9718 kmlem9 9923 sornom 10042 fpwwe2lem11 10406 cnegex 11165 zaddcl 12369 rexanre 15067 o1lo1 15255 o1co 15304 rlimcn3 15308 o1of2 15331 lo1add 15345 lo1mul 15346 summo 15438 ntrivcvgmul 15623 prodmolem2 15654 prodmo 15655 dvds2lem 15987 odd2np1 16059 opoe 16081 omoe 16082 opeo 16083 omeo 16084 bezoutlem4 16259 gcddiv 16268 divgcdcoprmex 16380 pcqmul 16563 pcadd 16599 mul4sq 16664 4sqlem12 16666 prmgaplem7 16767 cyccom 18831 gaorber 18923 psgneu 19123 lsmsubm 19267 pj1eu 19311 efgredlem 19362 efgrelexlemb 19365 qusabl 19475 cygablOLD 19501 dprdsubg 19636 dvdsrtr 19903 unitgrp 19918 lss1d 20234 lsmspsn 20355 lspsolvlem 20413 lbsextlem2 20430 znfld 20777 cygznlem3 20786 psgnghm 20794 tgcl 22128 restbas 22318 ordtbas2 22351 uncmp 22563 txuni2 22725 txbas 22727 ptbasin 22737 txcnp 22780 txlly 22796 txnlly 22797 tx1stc 22810 tx2ndc 22811 fbasrn 23044 rnelfmlem 23112 fmfnfmlem3 23116 txflf 23166 qustgplem 23281 trust 23390 utoptop 23395 fmucndlem 23452 blin2 23591 metustto 23718 tgqioo 23972 minveclem3b 24601 pmltpc 24623 evthicc2 24633 ovolunlem2 24671 dyaddisj 24769 rolle 25163 dvcvx 25193 itgsubst 25222 plyadd 25387 plymul 25388 coeeu 25395 aalioulem6 25506 dchrptlem2 26422 lgsdchr 26512 mul2sq 26576 2sqlem5 26579 pntibnd 26750 pntlemp 26767 cgraswap 27190 cgracom 27192 cgratr 27193 flatcgra 27194 dfcgra2 27200 acopyeu 27204 ax5seg 27315 axpasch 27318 axeuclid 27340 axcontlem4 27344 axcontlem9 27349 uhgr2edg 27584 2pthon3v 28317 pjhthmo 29673 superpos 30725 chirredi 30765 cdjreui 30803 cdj3i 30812 xrofsup 31099 archiabllem2c 31458 ccfldextdgrr 31751 ordtconnlem1 31883 dya2iocnrect 32257 txpconn 33203 cvmlift2lem10 33283 cvmlift3lem7 33296 msubco 33502 mclsppslem 33554 poseq 33811 soseq 33812 nosupprefixmo 33912 noinfprefixmo 33913 altopelaltxp 34287 funtransport 34342 btwnconn1lem13 34410 btwnconn1lem14 34411 segletr 34425 segleantisym 34426 funray 34451 funline 34453 tailfb 34575 mblfinlem3 35825 ismblfin 35827 itg2addnc 35840 ftc1anclem6 35864 heibor1lem 35976 crngohomfo 36173 ispridlc 36237 prter1 36900 hl2at 37426 cdlemn11pre 39231 dihord2pre 39246 dihord4 39279 dihmeetlem20N 39347 mapdpglem32 39726 diophin 40601 diophun 40602 iunrelexpuztr 41334 mullimc 43164 mullimcf 43171 addlimc 43196 fourierdlem42 43697 fourierdlem80 43734 sge0resplit 43951 hoiqssbllem3 44169 |
Copyright terms: Public domain | W3C validator |