| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reeanv | Structured version Visualization version GIF version | ||
| Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv 1955 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) | |
| 2 | 1 | reeanlem 3208 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: 3reeanv 3210 2reu4lem 4485 disjxiun 5104 fliftfun 7287 poseq 8137 soseq 8138 frrlem9 8273 tfrlem5 8348 uniinqs 8770 eroveu 8785 erovlem 8786 xpf1o 9103 unxpdomlem3 9199 finsschain 9310 dffi3 9382 ttrcltr 9669 rankxplim3 9834 xpnum 9904 kmlem9 10112 sornom 10230 fpwwe2lem11 10594 cnegex 11355 zaddcl 12573 rexanre 15313 o1lo1 15503 o1co 15552 rlimcn3 15556 o1of2 15579 lo1add 15593 lo1mul 15594 summo 15683 ntrivcvgmul 15868 prodmolem2 15901 prodmo 15902 dvds2lem 16238 odd2np1 16311 opoe 16333 omoe 16334 opeo 16335 omeo 16336 bezoutlem4 16512 gcddiv 16521 divgcdcoprmex 16636 pcqmul 16824 pcadd 16860 mul4sq 16925 4sqlem12 16927 prmgaplem7 17028 cyccom 19135 gaorber 19240 psgneu 19436 lsmsubm 19583 pj1eu 19626 efgredlem 19677 efgrelexlemb 19680 qusabl 19795 dprdsubg 19956 dvdsrtr 20277 unitgrp 20292 lss1d 20869 lsmspsn 20991 lspsolvlem 21052 lbsextlem2 21069 znfld 21470 cygznlem3 21479 psgnghm 21489 tgcl 22856 restbas 23045 ordtbas2 23078 uncmp 23290 txuni2 23452 txbas 23454 ptbasin 23464 txcnp 23507 txlly 23523 txnlly 23524 tx1stc 23537 tx2ndc 23538 fbasrn 23771 rnelfmlem 23839 fmfnfmlem3 23843 txflf 23893 qustgplem 24008 trust 24117 utoptop 24122 fmucndlem 24178 blin2 24317 metustto 24441 tgqioo 24688 minveclem3b 25328 pmltpc 25351 evthicc2 25361 ovolunlem2 25399 dyaddisj 25497 rolle 25894 dvcvx 25925 itgsubst 25956 plyadd 26122 plymul 26123 coeeu 26130 aalioulem6 26245 dchrptlem2 27176 lgsdchr 27266 mul2sq 27330 2sqlem5 27333 pntibnd 27504 pntlemp 27521 nosupprefixmo 27612 noinfprefixmo 27613 addsproplem2 27877 negsproplem2 27935 mulsuniflem 28052 precsexlem10 28118 zaddscl 28282 zmulscld 28285 zseo 28308 recut 28347 readdscl 28350 remulscl 28353 cgraswap 28747 cgracom 28749 cgratr 28750 flatcgra 28751 dfcgra2 28757 acopyeu 28761 ax5seg 28865 axpasch 28868 axeuclid 28890 axcontlem4 28894 axcontlem9 28899 uhgr2edg 29135 2pthon3v 29873 pjhthmo 31231 superpos 32283 chirredi 32323 cdjreui 32361 cdj3i 32370 xrofsup 32690 archiabllem2c 33149 ccfldextdgrr 33667 ordtconnlem1 33914 dya2iocnrect 34272 txpconn 35219 cvmlift2lem10 35299 cvmlift3lem7 35312 msubco 35518 mclsppslem 35570 altopelaltxp 35964 funtransport 36019 btwnconn1lem13 36087 btwnconn1lem14 36088 segletr 36102 segleantisym 36103 funray 36128 funline 36130 tailfb 36365 mblfinlem3 37653 ismblfin 37655 itg2addnc 37668 ftc1anclem6 37692 heibor1lem 37803 crngohomfo 38000 ispridlc 38064 prter1 38872 hl2at 39399 cdlemn11pre 41204 dihord2pre 41219 dihord4 41252 dihmeetlem20N 41320 mapdpglem32 41699 diophin 42760 diophun 42761 iunrelexpuztr 43708 mullimc 45614 mullimcf 45621 addlimc 45646 fourierdlem42 46147 fourierdlem80 46184 sge0resplit 46404 hoiqssbllem3 46622 |
| Copyright terms: Public domain | W3C validator |