Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reeanv | Structured version Visualization version GIF version |
Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistrv 1960 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) | |
2 | 1 | reeanlem 3290 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: 3reeanv 3293 2ralorOLD 3295 2reu4lem 4453 disjxiun 5067 fliftfun 7163 frrlem9 8081 tfrlem5 8182 uniinqs 8544 eroveu 8559 erovlem 8560 xpf1o 8875 unxpdomlem3 8958 unfiOLD 9011 finsschain 9056 dffi3 9120 rankxplim3 9570 xpnum 9640 kmlem9 9845 sornom 9964 fpwwe2lem11 10328 cnegex 11086 zaddcl 12290 rexanre 14986 o1lo1 15174 o1co 15223 rlimcn3 15227 o1of2 15250 lo1add 15264 lo1mul 15265 summo 15357 ntrivcvgmul 15542 prodmolem2 15573 prodmo 15574 dvds2lem 15906 odd2np1 15978 opoe 16000 omoe 16001 opeo 16002 omeo 16003 bezoutlem4 16178 gcddiv 16187 divgcdcoprmex 16299 pcqmul 16482 pcadd 16518 mul4sq 16583 4sqlem12 16585 prmgaplem7 16686 cyccom 18737 gaorber 18829 psgneu 19029 lsmsubm 19173 pj1eu 19217 efgredlem 19268 efgrelexlemb 19271 qusabl 19381 cygablOLD 19407 dprdsubg 19542 dvdsrtr 19809 unitgrp 19824 lss1d 20140 lsmspsn 20261 lspsolvlem 20319 lbsextlem2 20336 znfld 20680 cygznlem3 20689 psgnghm 20697 tgcl 22027 restbas 22217 ordtbas2 22250 uncmp 22462 txuni2 22624 txbas 22626 ptbasin 22636 txcnp 22679 txlly 22695 txnlly 22696 tx1stc 22709 tx2ndc 22710 fbasrn 22943 rnelfmlem 23011 fmfnfmlem3 23015 txflf 23065 qustgplem 23180 trust 23289 utoptop 23294 fmucndlem 23351 blin2 23490 metustto 23615 tgqioo 23869 minveclem3b 24497 pmltpc 24519 evthicc2 24529 ovolunlem2 24567 dyaddisj 24665 rolle 25059 dvcvx 25089 itgsubst 25118 plyadd 25283 plymul 25284 coeeu 25291 aalioulem6 25402 dchrptlem2 26318 lgsdchr 26408 mul2sq 26472 2sqlem5 26475 pntibnd 26646 pntlemp 26663 cgraswap 27085 cgracom 27087 cgratr 27088 flatcgra 27089 dfcgra2 27095 acopyeu 27099 ax5seg 27209 axpasch 27212 axeuclid 27234 axcontlem4 27238 axcontlem9 27243 uhgr2edg 27478 2pthon3v 28209 pjhthmo 29565 superpos 30617 chirredi 30657 cdjreui 30695 cdj3i 30704 xrofsup 30992 archiabllem2c 31351 ccfldextdgrr 31644 ordtconnlem1 31776 dya2iocnrect 32148 txpconn 33094 cvmlift2lem10 33174 cvmlift3lem7 33187 msubco 33393 mclsppslem 33445 ttrcltr 33702 poseq 33729 soseq 33730 nosupprefixmo 33830 noinfprefixmo 33831 altopelaltxp 34205 funtransport 34260 btwnconn1lem13 34328 btwnconn1lem14 34329 segletr 34343 segleantisym 34344 funray 34369 funline 34371 tailfb 34493 mblfinlem3 35743 ismblfin 35745 itg2addnc 35758 ftc1anclem6 35782 heibor1lem 35894 crngohomfo 36091 ispridlc 36155 prter1 36820 hl2at 37346 cdlemn11pre 39151 dihord2pre 39166 dihord4 39199 dihmeetlem20N 39267 mapdpglem32 39646 diophin 40510 diophun 40511 iunrelexpuztr 41216 mullimc 43047 mullimcf 43054 addlimc 43079 fourierdlem42 43580 fourierdlem80 43617 sge0resplit 43834 hoiqssbllem3 44052 |
Copyright terms: Public domain | W3C validator |