![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reeanv | Structured version Visualization version GIF version |
Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistrv 1955 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) | |
2 | 1 | reeanlem 3234 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: 3reeanv 3236 2ralorOLD 3238 2reu4lem 4545 disjxiun 5163 fliftfun 7348 poseq 8199 soseq 8200 frrlem9 8335 tfrlem5 8436 uniinqs 8855 eroveu 8870 erovlem 8871 xpf1o 9205 unxpdomlem3 9315 finsschain 9429 dffi3 9500 ttrcltr 9785 rankxplim3 9950 xpnum 10020 kmlem9 10228 sornom 10346 fpwwe2lem11 10710 cnegex 11471 zaddcl 12683 rexanre 15395 o1lo1 15583 o1co 15632 rlimcn3 15636 o1of2 15659 lo1add 15673 lo1mul 15674 summo 15765 ntrivcvgmul 15950 prodmolem2 15983 prodmo 15984 dvds2lem 16317 odd2np1 16389 opoe 16411 omoe 16412 opeo 16413 omeo 16414 bezoutlem4 16589 gcddiv 16598 divgcdcoprmex 16713 pcqmul 16900 pcadd 16936 mul4sq 17001 4sqlem12 17003 prmgaplem7 17104 cyccom 19243 gaorber 19348 psgneu 19548 lsmsubm 19695 pj1eu 19738 efgredlem 19789 efgrelexlemb 19792 qusabl 19907 dprdsubg 20068 dvdsrtr 20394 unitgrp 20409 lss1d 20984 lsmspsn 21106 lspsolvlem 21167 lbsextlem2 21184 znfld 21602 cygznlem3 21611 psgnghm 21621 tgcl 22997 restbas 23187 ordtbas2 23220 uncmp 23432 txuni2 23594 txbas 23596 ptbasin 23606 txcnp 23649 txlly 23665 txnlly 23666 tx1stc 23679 tx2ndc 23680 fbasrn 23913 rnelfmlem 23981 fmfnfmlem3 23985 txflf 24035 qustgplem 24150 trust 24259 utoptop 24264 fmucndlem 24321 blin2 24460 metustto 24587 tgqioo 24841 minveclem3b 25481 pmltpc 25504 evthicc2 25514 ovolunlem2 25552 dyaddisj 25650 rolle 26048 dvcvx 26079 itgsubst 26110 plyadd 26276 plymul 26277 coeeu 26284 aalioulem6 26397 dchrptlem2 27327 lgsdchr 27417 mul2sq 27481 2sqlem5 27484 pntibnd 27655 pntlemp 27672 nosupprefixmo 27763 noinfprefixmo 27764 addsproplem2 28021 negsproplem2 28079 mulsuniflem 28193 precsexlem10 28258 zaddscl 28398 zmulscld 28401 zseo 28424 recut 28446 readdscl 28449 remulscl 28452 cgraswap 28846 cgracom 28848 cgratr 28849 flatcgra 28850 dfcgra2 28856 acopyeu 28860 ax5seg 28971 axpasch 28974 axeuclid 28996 axcontlem4 29000 axcontlem9 29005 uhgr2edg 29243 2pthon3v 29976 pjhthmo 31334 superpos 32386 chirredi 32426 cdjreui 32464 cdj3i 32473 xrofsup 32774 archiabllem2c 33175 ccfldextdgrr 33682 ordtconnlem1 33870 dya2iocnrect 34246 txpconn 35200 cvmlift2lem10 35280 cvmlift3lem7 35293 msubco 35499 mclsppslem 35551 altopelaltxp 35940 funtransport 35995 btwnconn1lem13 36063 btwnconn1lem14 36064 segletr 36078 segleantisym 36079 funray 36104 funline 36106 tailfb 36343 mblfinlem3 37619 ismblfin 37621 itg2addnc 37634 ftc1anclem6 37658 heibor1lem 37769 crngohomfo 37966 ispridlc 38030 prter1 38835 hl2at 39362 cdlemn11pre 41167 dihord2pre 41182 dihord4 41215 dihmeetlem20N 41283 mapdpglem32 41662 diophin 42728 diophun 42729 iunrelexpuztr 43681 mullimc 45537 mullimcf 45544 addlimc 45569 fourierdlem42 46070 fourierdlem80 46107 sge0resplit 46327 hoiqssbllem3 46545 |
Copyright terms: Public domain | W3C validator |