| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reeanv | Structured version Visualization version GIF version | ||
| Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999.) |
| Ref | Expression |
|---|---|
| reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv 1955 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) | |
| 2 | 1 | reeanlem 3209 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: 3reeanv 3211 2reu4lem 4488 disjxiun 5107 fliftfun 7290 poseq 8140 soseq 8141 frrlem9 8276 tfrlem5 8351 uniinqs 8773 eroveu 8788 erovlem 8789 xpf1o 9109 unxpdomlem3 9206 finsschain 9317 dffi3 9389 ttrcltr 9676 rankxplim3 9841 xpnum 9911 kmlem9 10119 sornom 10237 fpwwe2lem11 10601 cnegex 11362 zaddcl 12580 rexanre 15320 o1lo1 15510 o1co 15559 rlimcn3 15563 o1of2 15586 lo1add 15600 lo1mul 15601 summo 15690 ntrivcvgmul 15875 prodmolem2 15908 prodmo 15909 dvds2lem 16245 odd2np1 16318 opoe 16340 omoe 16341 opeo 16342 omeo 16343 bezoutlem4 16519 gcddiv 16528 divgcdcoprmex 16643 pcqmul 16831 pcadd 16867 mul4sq 16932 4sqlem12 16934 prmgaplem7 17035 cyccom 19142 gaorber 19247 psgneu 19443 lsmsubm 19590 pj1eu 19633 efgredlem 19684 efgrelexlemb 19687 qusabl 19802 dprdsubg 19963 dvdsrtr 20284 unitgrp 20299 lss1d 20876 lsmspsn 20998 lspsolvlem 21059 lbsextlem2 21076 znfld 21477 cygznlem3 21486 psgnghm 21496 tgcl 22863 restbas 23052 ordtbas2 23085 uncmp 23297 txuni2 23459 txbas 23461 ptbasin 23471 txcnp 23514 txlly 23530 txnlly 23531 tx1stc 23544 tx2ndc 23545 fbasrn 23778 rnelfmlem 23846 fmfnfmlem3 23850 txflf 23900 qustgplem 24015 trust 24124 utoptop 24129 fmucndlem 24185 blin2 24324 metustto 24448 tgqioo 24695 minveclem3b 25335 pmltpc 25358 evthicc2 25368 ovolunlem2 25406 dyaddisj 25504 rolle 25901 dvcvx 25932 itgsubst 25963 plyadd 26129 plymul 26130 coeeu 26137 aalioulem6 26252 dchrptlem2 27183 lgsdchr 27273 mul2sq 27337 2sqlem5 27340 pntibnd 27511 pntlemp 27528 nosupprefixmo 27619 noinfprefixmo 27620 addsproplem2 27884 negsproplem2 27942 mulsuniflem 28059 precsexlem10 28125 zaddscl 28289 zmulscld 28292 zseo 28315 recut 28354 readdscl 28357 remulscl 28360 cgraswap 28754 cgracom 28756 cgratr 28757 flatcgra 28758 dfcgra2 28764 acopyeu 28768 ax5seg 28872 axpasch 28875 axeuclid 28897 axcontlem4 28901 axcontlem9 28906 uhgr2edg 29142 2pthon3v 29880 pjhthmo 31238 superpos 32290 chirredi 32330 cdjreui 32368 cdj3i 32377 xrofsup 32697 archiabllem2c 33156 ccfldextdgrr 33674 ordtconnlem1 33921 dya2iocnrect 34279 txpconn 35226 cvmlift2lem10 35306 cvmlift3lem7 35319 msubco 35525 mclsppslem 35577 altopelaltxp 35971 funtransport 36026 btwnconn1lem13 36094 btwnconn1lem14 36095 segletr 36109 segleantisym 36110 funray 36135 funline 36137 tailfb 36372 mblfinlem3 37660 ismblfin 37662 itg2addnc 37675 ftc1anclem6 37699 heibor1lem 37810 crngohomfo 38007 ispridlc 38071 prter1 38879 hl2at 39406 cdlemn11pre 41211 dihord2pre 41226 dihord4 41259 dihmeetlem20N 41327 mapdpglem32 41706 diophin 42767 diophun 42768 iunrelexpuztr 43715 mullimc 45621 mullimcf 45628 addlimc 45653 fourierdlem42 46154 fourierdlem80 46191 sge0resplit 46411 hoiqssbllem3 46629 |
| Copyright terms: Public domain | W3C validator |