Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reeanv | Structured version Visualization version GIF version |
Description: Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
reeanv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistrv 1956 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) | |
2 | 1 | reeanlem 3283 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2111 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-ral 3075 df-rex 3076 |
This theorem is referenced by: 3reeanv 3286 2ralor 3287 2reu4lem 4421 disjxiun 5033 fliftfun 7065 tfrlem5 8032 uniinqs 8393 eroveu 8408 erovlem 8409 xpf1o 8714 unxpdomlem3 8775 unfiOLD 8831 finsschain 8877 dffi3 8941 rankxplim3 9356 xpnum 9426 kmlem9 9631 sornom 9750 fpwwe2lem11 10114 cnegex 10872 zaddcl 12074 rexanre 14767 o1lo1 14955 o1co 15004 rlimcn2 15008 o1of2 15030 lo1add 15044 lo1mul 15045 summo 15135 ntrivcvgmul 15319 prodmolem2 15350 prodmo 15351 dvds2lem 15683 odd2np1 15755 opoe 15777 omoe 15778 opeo 15779 omeo 15780 bezoutlem4 15954 gcddiv 15963 divgcdcoprmex 16075 pcqmul 16258 pcadd 16293 mul4sq 16358 4sqlem12 16360 prmgaplem7 16461 cyccom 18426 gaorber 18518 psgneu 18714 lsmsubm 18858 pj1eu 18902 efgredlem 18953 efgrelexlemb 18956 qusabl 19066 cygablOLD 19092 dprdsubg 19227 dvdsrtr 19486 unitgrp 19501 lss1d 19816 lsmspsn 19937 lspsolvlem 19995 lbsextlem2 20012 znfld 20341 cygznlem3 20350 psgnghm 20358 tgcl 21682 restbas 21871 ordtbas2 21904 uncmp 22116 txuni2 22278 txbas 22280 ptbasin 22290 txcnp 22333 txlly 22349 txnlly 22350 tx1stc 22363 tx2ndc 22364 fbasrn 22597 rnelfmlem 22665 fmfnfmlem3 22669 txflf 22719 qustgplem 22834 trust 22943 utoptop 22948 fmucndlem 23005 blin2 23144 metustto 23268 tgqioo 23514 minveclem3b 24141 pmltpc 24163 evthicc2 24173 ovolunlem2 24211 dyaddisj 24309 rolle 24702 dvcvx 24732 itgsubst 24761 plyadd 24926 plymul 24927 coeeu 24934 aalioulem6 25045 dchrptlem2 25961 lgsdchr 26051 mul2sq 26115 2sqlem5 26118 pntibnd 26289 pntlemp 26306 cgraswap 26726 cgracom 26728 cgratr 26729 flatcgra 26730 dfcgra2 26736 acopyeu 26740 ax5seg 26844 axpasch 26847 axeuclid 26869 axcontlem4 26873 axcontlem9 26878 uhgr2edg 27110 2pthon3v 27841 pjhthmo 29197 superpos 30249 chirredi 30289 cdjreui 30327 cdj3i 30336 xrofsup 30626 archiabllem2c 30987 ccfldextdgrr 31275 ordtconnlem1 31407 dya2iocnrect 31779 txpconn 32722 cvmlift2lem10 32802 cvmlift3lem7 32815 msubco 33021 mclsppslem 33073 poseq 33369 soseq 33370 frrlem9 33405 nosupprefixmo 33500 noinfprefixmo 33501 altopelaltxp 33861 funtransport 33916 btwnconn1lem13 33984 btwnconn1lem14 33985 segletr 33999 segleantisym 34000 funray 34025 funline 34027 tailfb 34149 mblfinlem3 35410 ismblfin 35412 itg2addnc 35425 ftc1anclem6 35449 heibor1lem 35561 crngohomfo 35758 ispridlc 35822 prter1 36489 hl2at 37015 cdlemn11pre 38820 dihord2pre 38835 dihord4 38868 dihmeetlem20N 38936 mapdpglem32 39315 diophin 40121 diophun 40122 iunrelexpuztr 40828 mullimc 42659 mullimcf 42666 addlimc 42691 fourierdlem42 43192 fourierdlem80 43229 sge0resplit 43446 hoiqssbllem3 43664 |
Copyright terms: Public domain | W3C validator |