![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.41vv | Structured version Visualization version GIF version |
Description: Version of r19.41v 3182 with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
r19.41vv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3182 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | |
2 | 1 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
3 | r19.41v 3182 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-rex 3071 |
This theorem is referenced by: genpass 10950 dfcgra2 27814 axeuclid 27954 wspthsnwspthsnon 28903 dya2iocnrect 32938 satfv0 34009 satfv1 34014 satf0 34023 itg2addnclem3 36177 prprelprb 45795 prprspr2 45796 |
Copyright terms: Public domain | W3C validator |