MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.41vv Structured version   Visualization version   GIF version

Theorem r19.41vv 3202
Description: Version of r19.41v 3162 with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Assertion
Ref Expression
r19.41vv (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴𝑦𝐵 𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem r19.41vv
StepHypRef Expression
1 r19.41v 3162 . . 3 (∃𝑦𝐵 (𝜑𝜓) ↔ (∃𝑦𝐵 𝜑𝜓))
21rexbii 3079 . 2 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∃𝑥𝐴 (∃𝑦𝐵 𝜑𝜓))
3 r19.41v 3162 . 2 (∃𝑥𝐴 (∃𝑦𝐵 𝜑𝜓) ↔ (∃𝑥𝐴𝑦𝐵 𝜑𝜓))
42, 3bitri 275 1 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴𝑦𝐵 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-rex 3057
This theorem is referenced by:  genpass  10897  mulsuniflem  28086  addsdilem2  28089  mulsasslem1  28100  mulsasslem2  28101  dfcgra2  28806  axeuclid  28939  wspthsnwspthsnon  29892  dya2iocnrect  34289  satfv0  35390  satfv1  35395  satf0  35404  itg2addnclem3  37712  prprelprb  47547  prprspr2  47548
  Copyright terms: Public domain W3C validator