![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.41vv | Structured version Visualization version GIF version |
Description: Version of r19.41v 3195 with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
r19.41vv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3195 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | |
2 | 1 | rexbii 3100 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
3 | r19.41v 3195 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: genpass 11078 mulsuniflem 28193 addsdilem2 28196 mulsasslem1 28207 mulsasslem2 28208 dfcgra2 28856 axeuclid 28996 wspthsnwspthsnon 29949 dya2iocnrect 34246 satfv0 35326 satfv1 35331 satf0 35340 itg2addnclem3 37633 prprelprb 47391 prprspr2 47392 |
Copyright terms: Public domain | W3C validator |