MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.41vv Structured version   Visualization version   GIF version

Theorem r19.41vv 3199
Description: Version of r19.41v 3159 with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Assertion
Ref Expression
r19.41vv (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴𝑦𝐵 𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem r19.41vv
StepHypRef Expression
1 r19.41v 3159 . . 3 (∃𝑦𝐵 (𝜑𝜓) ↔ (∃𝑦𝐵 𝜑𝜓))
21rexbii 3076 . 2 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∃𝑥𝐴 (∃𝑦𝐵 𝜑𝜓))
3 r19.41v 3159 . 2 (∃𝑥𝐴 (∃𝑦𝐵 𝜑𝜓) ↔ (∃𝑥𝐴𝑦𝐵 𝜑𝜓))
42, 3bitri 275 1 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴𝑦𝐵 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3054
This theorem is referenced by:  genpass  10922  mulsuniflem  28075  addsdilem2  28078  mulsasslem1  28089  mulsasslem2  28090  dfcgra2  28793  axeuclid  28926  wspthsnwspthsnon  29879  dya2iocnrect  34248  satfv0  35330  satfv1  35335  satf0  35344  itg2addnclem3  37652  prprelprb  47502  prprspr2  47503
  Copyright terms: Public domain W3C validator