![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.41vv | Structured version Visualization version GIF version |
Description: Version of r19.41v 3186 with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
r19.41vv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3186 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | |
2 | 1 | rexbii 3091 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
3 | r19.41v 3186 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-rex 3068 |
This theorem is referenced by: genpass 11040 mulsuniflem 28069 addsdilem2 28072 mulsasslem1 28083 mulsasslem2 28084 dfcgra2 28654 axeuclid 28794 wspthsnwspthsnon 29747 dya2iocnrect 33934 satfv0 35001 satfv1 35006 satf0 35015 itg2addnclem3 37179 prprelprb 46886 prprspr2 46887 |
Copyright terms: Public domain | W3C validator |