![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.41vv | Structured version Visualization version GIF version |
Description: Version of r19.41v 3188 with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
r19.41vv | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3188 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | |
2 | 1 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
3 | r19.41v 3188 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: genpass 11003 mulsuniflem 27601 addsdilem2 27604 mulsasslem1 27615 mulsasslem2 27616 dfcgra2 28078 axeuclid 28218 wspthsnwspthsnon 29167 dya2iocnrect 33275 satfv0 34344 satfv1 34349 satf0 34358 itg2addnclem3 36536 prprelprb 46175 prprspr2 46176 |
Copyright terms: Public domain | W3C validator |