MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifdir Structured version   Visualization version   GIF version

Theorem resdifdir 6071
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.)
Assertion
Ref Expression
resdifdir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))

Proof of Theorem resdifdir
StepHypRef Expression
1 indifdir 4191 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V)))
2 df-res 5540 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5540 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5540 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4difeq12i 4028 . 2 ((𝐴𝐶) ∖ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2791 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  Vcvv 3409  cdif 3857  cin 3859   × cxp 5526  cres 5530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-rab 3079  df-v 3411  df-dif 3863  df-in 3867  df-res 5540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator