MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifdir Structured version   Visualization version   GIF version

Theorem resdifdir 6140
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.)
Assertion
Ref Expression
resdifdir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))

Proof of Theorem resdifdir
StepHypRef Expression
1 indifdir 4218 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V)))
2 df-res 5601 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5601 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5601 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4difeq12i 4055 . 2 ((𝐴𝐶) ∖ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2776 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3432  cdif 3884  cin 3886   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-res 5601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator