| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdifdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| resdifdir | ⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indifdir 4270 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5666 | . 2 ⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ∖ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 5666 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 4 | df-res 5666 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 5 | 3, 4 | difeq12i 4099 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V))) |
| 6 | 1, 2, 5 | 3eqtr4i 2768 | 1 ⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 × cxp 5652 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-res 5666 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |