|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > resdifdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| resdifdir | ⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indifdir 4295 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 5697 | . 2 ⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ∖ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 5697 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 4 | df-res 5697 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 5 | 3, 4 | difeq12i 4124 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V))) | 
| 6 | 1, 2, 5 | 3eqtr4i 2775 | 1 ⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 Vcvv 3480 ∖ cdif 3948 ∩ cin 3950 × cxp 5683 ↾ cres 5687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-res 5697 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |