MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifdir Structured version   Visualization version   GIF version

Theorem resdifdir 6268
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.)
Assertion
Ref Expression
resdifdir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))

Proof of Theorem resdifdir
StepHypRef Expression
1 indifdir 4314 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V)))
2 df-res 5712 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 5712 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 5712 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4difeq12i 4147 . 2 ((𝐴𝐶) ∖ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∖ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2778 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  cdif 3973  cin 3975   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-res 5712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator