![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resdifdi | Structured version Visualization version GIF version |
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
Ref | Expression |
---|---|
resdifdi | ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5689 | . . 3 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = (𝐴 ∩ ((𝐵 ∖ 𝐶) × V)) | |
2 | difxp1 6165 | . . . 4 ⊢ ((𝐵 ∖ 𝐶) × V) = ((𝐵 × V) ∖ (𝐶 × V)) | |
3 | 2 | ineq2i 4210 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∖ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) |
4 | indifdi 4284 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) | |
5 | 1, 3, 4 | 3eqtri 2765 | . 2 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) |
6 | df-res 5689 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
7 | df-res 5689 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
8 | 6, 7 | difeq12i 4121 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) |
9 | 5, 8 | eqtr4i 2764 | 1 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 Vcvv 3475 ∖ cdif 3946 ∩ cin 3948 × cxp 5675 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-res 5689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |