Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resdifdi | Structured version Visualization version GIF version |
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
Ref | Expression |
---|---|
resdifdi | ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5601 | . . 3 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = (𝐴 ∩ ((𝐵 ∖ 𝐶) × V)) | |
2 | difxp1 6068 | . . . 4 ⊢ ((𝐵 ∖ 𝐶) × V) = ((𝐵 × V) ∖ (𝐶 × V)) | |
3 | 2 | ineq2i 4143 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∖ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) |
4 | indifdi 4217 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) | |
5 | 1, 3, 4 | 3eqtri 2770 | . 2 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) |
6 | df-res 5601 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
7 | df-res 5601 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
8 | 6, 7 | difeq12i 4055 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) |
9 | 5, 8 | eqtr4i 2769 | 1 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-res 5601 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |