MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifdi Structured version   Visualization version   GIF version

Theorem resdifdi 6197
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.)
Assertion
Ref Expression
resdifdi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐴𝐶))

Proof of Theorem resdifdi
StepHypRef Expression
1 df-res 5643 . . 3 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
2 difxp1 6126 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∖ (𝐶 × V))
32ineq2i 4176 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V)))
4 indifdi 4253 . . 3 (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
51, 3, 43eqtri 2756 . 2 (𝐴 ↾ (𝐵𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
6 df-res 5643 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5643 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7difeq12i 4083 . 2 ((𝐴𝐵) ∖ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
95, 8eqtr4i 2755 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3444  cdif 3908  cin 3910   × cxp 5629  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-res 5643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator