MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifdi Structured version   Visualization version   GIF version

Theorem resdifdi 6070
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.)
Assertion
Ref Expression
resdifdi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐴𝐶))

Proof of Theorem resdifdi
StepHypRef Expression
1 df-res 5540 . . 3 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
2 difxp1 5999 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∖ (𝐶 × V))
32ineq2i 4116 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V)))
4 indifdi 4190 . . 3 (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
51, 3, 43eqtri 2785 . 2 (𝐴 ↾ (𝐵𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
6 df-res 5540 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5540 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7difeq12i 4028 . 2 ((𝐴𝐵) ∖ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
95, 8eqtr4i 2784 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  Vcvv 3409  cdif 3857  cin 3859   × cxp 5526  cres 5530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-xp 5534  df-rel 5535  df-cnv 5536  df-res 5540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator