MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifdi Structured version   Visualization version   GIF version

Theorem resdifdi 6258
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.)
Assertion
Ref Expression
resdifdi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐴𝐶))

Proof of Theorem resdifdi
StepHypRef Expression
1 df-res 5701 . . 3 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
2 difxp1 6187 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∖ (𝐶 × V))
32ineq2i 4225 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V)))
4 indifdi 4300 . . 3 (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
51, 3, 43eqtri 2767 . 2 (𝐴 ↾ (𝐵𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
6 df-res 5701 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5701 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7difeq12i 4134 . 2 ((𝐴𝐵) ∖ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
95, 8eqtr4i 2766 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3478  cdif 3960  cin 3962   × cxp 5687  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-res 5701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator