| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdifdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| resdifdi | ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5626 | . . 3 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = (𝐴 ∩ ((𝐵 ∖ 𝐶) × V)) | |
| 2 | difxp1 6112 | . . . 4 ⊢ ((𝐵 ∖ 𝐶) × V) = ((𝐵 × V) ∖ (𝐶 × V)) | |
| 3 | 2 | ineq2i 4164 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∖ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) |
| 4 | indifdi 4241 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) | |
| 5 | 1, 3, 4 | 3eqtri 2758 | . 2 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) |
| 6 | df-res 5626 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 7 | df-res 5626 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 8 | 6, 7 | difeq12i 4071 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) |
| 9 | 5, 8 | eqtr4i 2757 | 1 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 × cxp 5612 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-rel 5621 df-res 5626 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |