MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifdi Structured version   Visualization version   GIF version

Theorem resdifdi 6267
Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.)
Assertion
Ref Expression
resdifdi (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐴𝐶))

Proof of Theorem resdifdi
StepHypRef Expression
1 df-res 5712 . . 3 (𝐴 ↾ (𝐵𝐶)) = (𝐴 ∩ ((𝐵𝐶) × V))
2 difxp1 6196 . . . 4 ((𝐵𝐶) × V) = ((𝐵 × V) ∖ (𝐶 × V))
32ineq2i 4238 . . 3 (𝐴 ∩ ((𝐵𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V)))
4 indifdi 4313 . . 3 (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
51, 3, 43eqtri 2772 . 2 (𝐴 ↾ (𝐵𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
6 df-res 5712 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
7 df-res 5712 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
86, 7difeq12i 4147 . 2 ((𝐴𝐵) ∖ (𝐴𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V)))
95, 8eqtr4i 2771 1 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  cdif 3973  cin 3975   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-res 5712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator