| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdifdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| resdifdi | ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5666 | . . 3 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = (𝐴 ∩ ((𝐵 ∖ 𝐶) × V)) | |
| 2 | difxp1 6154 | . . . 4 ⊢ ((𝐵 ∖ 𝐶) × V) = ((𝐵 × V) ∖ (𝐶 × V)) | |
| 3 | 2 | ineq2i 4192 | . . 3 ⊢ (𝐴 ∩ ((𝐵 ∖ 𝐶) × V)) = (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) |
| 4 | indifdi 4269 | . . 3 ⊢ (𝐴 ∩ ((𝐵 × V) ∖ (𝐶 × V))) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) | |
| 5 | 1, 3, 4 | 3eqtri 2762 | . 2 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) |
| 6 | df-res 5666 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 7 | df-res 5666 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 8 | 6, 7 | difeq12i 4099 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) = ((𝐴 ∩ (𝐵 × V)) ∖ (𝐴 ∩ (𝐶 × V))) |
| 9 | 5, 8 | eqtr4i 2761 | 1 ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 × cxp 5652 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-res 5666 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |