| Metamath
Proof Explorer Theorem List (p. 63 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | relsn2 6201 | A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅)) | ||
| Theorem | dmsnopg 6202 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) | ||
| Theorem | dmsnopss 6203 | The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ dom {〈𝐴, 𝐵〉} ⊆ {𝐴} | ||
| Theorem | dmpropg 6204 | The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶}) | ||
| Theorem | dmsnop 6205 | The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} | ||
| Theorem | dmprop 6206 | The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {𝐴, 𝐶} | ||
| Theorem | dmtpop 6207 | The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ 𝐹 ∈ V ⇒ ⊢ dom {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉, 〈𝐸, 𝐹〉} = {𝐴, 𝐶, 𝐸} | ||
| Theorem | cnvcnvsn 6208 | Double converse of a singleton of an ordered pair. (Unlike cnvsn 6215, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ ◡◡{〈𝐴, 𝐵〉} = ◡{〈𝐵, 𝐴〉} | ||
| Theorem | dmsnsnsn 6209 | The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ dom {{{𝐴}}} = {𝐴} | ||
| Theorem | rnsnopg 6210 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → ran {〈𝐴, 𝐵〉} = {𝐵}) | ||
| Theorem | rnpropg 6211 | The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ran {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = {𝐶, 𝐷}) | ||
| Theorem | cnvsng 6212 | Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | ||
| Theorem | rnsnop 6213 | The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ran {〈𝐴, 𝐵〉} = {𝐵} | ||
| Theorem | op1sta 6214 | Extract the first member of an ordered pair. (See op2nda 6217 to extract the second member, op1stb 5446 for an alternate version, and op1st 7994 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 | ||
| Theorem | cnvsn 6215 | Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} | ||
| Theorem | op2ndb 6216 | Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5446 to extract the first member, op2nda 6217 for an alternate version, and op2nd 7995 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 | ||
| Theorem | op2nda 6217 | Extract the second member of an ordered pair. (See op1sta 6214 to extract the first member, op2ndb 6216 for an alternate version, and op2nd 7995 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 | ||
| Theorem | opswap 6218 | Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 | ||
| Theorem | cnvresima 6219 | An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
| ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) | ||
| Theorem | resdm2 6220 | A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | ||
| Theorem | resdmres 6221 | Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
| Theorem | resresdm 6222 | A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) |
| ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) | ||
| Theorem | imadmres 6223 | The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (𝐴 “ dom (𝐴 ↾ 𝐵)) = (𝐴 “ 𝐵) | ||
| Theorem | resdmss 6224 | Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ dom (𝐴 ↾ 𝐵) ⊆ 𝐵 | ||
| Theorem | resdifdi 6225 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
| ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) | ||
| Theorem | resdifdir 6226 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
| ⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) | ||
| Theorem | mptpreima 6227* | The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} | ||
| Theorem | mptiniseg 6228* | Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) | ||
| Theorem | dmmpt 6229 | The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | ||
| Theorem | dmmptss 6230* | The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
| Theorem | dmmptg 6231* | The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | ||
| Theorem | rnmpt0f 6232* | The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) | ||
| Theorem | rnmptn0 6233* | The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ran 𝐹 ≠ ∅) | ||
| Theorem | dfco2 6234* | Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
| ⊢ (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) | ||
| Theorem | dfco2a 6235* | Generalization of dfco2 6234, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) | ||
| Theorem | coundi 6236 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) | ||
| Theorem | coundir 6237 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) ∘ 𝐶) = ((𝐴 ∘ 𝐶) ∪ (𝐵 ∘ 𝐶)) | ||
| Theorem | cores 6238 | Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | ||
| Theorem | resco 6239 | Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
| ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) | ||
| Theorem | imaco 6240 | Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) (Proof shortened by Wolf Lammen, 16-May-2025.) |
| ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) | ||
| Theorem | rnco 6241 | The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | ||
| Theorem | rnco2 6242 | The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
| ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) | ||
| Theorem | dmco 6243 | The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
| ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) | ||
| Theorem | coeq0 6244 | A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6236 and coundir 6237 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) | ||
| Theorem | coiun 6245* | Composition with an indexed union. (Contributed by NM, 21-Dec-2008.) |
| ⊢ (𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
| Theorem | cocnvcnv1 6246 | A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
| ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | ||
| Theorem | cocnvcnv2 6247 | A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.) |
| ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) | ||
| Theorem | cores2 6248 | Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
| ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) | ||
| Theorem | co02 6249 | Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐴 ∘ ∅) = ∅ | ||
| Theorem | co01 6250 | Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (∅ ∘ 𝐴) = ∅ | ||
| Theorem | coi1 6251 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) | ||
| Theorem | coi2 6252 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) | ||
| Theorem | coires1 6253 | Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
| Theorem | coass 6254 | Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
| ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) | ||
| Theorem | relcnvtrg 6255 | General form of relcnvtr 6256. (Contributed by Peter Mazsa, 17-Oct-2023.) |
| ⊢ ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅 ∘ 𝑆) ⊆ 𝑇 ↔ (◡𝑆 ∘ ◡𝑅) ⊆ ◡𝑇)) | ||
| Theorem | relcnvtr 6256 | A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Peter Mazsa, 17-Oct-2023.) |
| ⊢ (Rel 𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) | ||
| Theorem | relssdmrn 6257 | A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.) |
| ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | ||
| Theorem | relssdmrnOLD 6258 | Obsolete version of relssdmrn 6257 as of 23-Dec-2024. (Contributed by NM, 3-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | ||
| Theorem | resssxp 6259 | If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) | ||
| Theorem | cnvssrndm 6260 | The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) | ||
| Theorem | cossxp 6261 | Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | ||
| Theorem | relrelss 6262 | Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.) |
| ⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V)) | ||
| Theorem | unielrel 6263 | The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) | ||
| Theorem | relfld 6264 | The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.) |
| ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | relresfld 6265 | Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.) |
| ⊢ (Rel 𝑅 → (𝑅 ↾ ∪ ∪ 𝑅) = 𝑅) | ||
| Theorem | relcoi2 6266 | Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
| ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) | ||
| Theorem | relcoi1 6267 | Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) | ||
| Theorem | unidmrn 6268 | The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
| ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) | ||
| Theorem | relcnvfld 6269 | if 𝑅 is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.) |
| ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) | ||
| Theorem | dfdm2 6270 | Alternate definition of domain df-dm 5664 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
| ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) | ||
| Theorem | unixp 6271 | The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.) |
| ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) | ||
| Theorem | unixp0 6272 | A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.) |
| ⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) | ||
| Theorem | unixpid 6273 | Field of a Cartesian square. (Contributed by FL, 10-Oct-2009.) |
| ⊢ ∪ ∪ (𝐴 × 𝐴) = 𝐴 | ||
| Theorem | ressn 6274 | Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) | ||
| Theorem | cnviin 6275* | The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012.) |
| ⊢ (𝐴 ≠ ∅ → ◡∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 ◡𝐵) | ||
| Theorem | cnvpo 6276 | The converse of a partial order is a partial order. (Contributed by NM, 15-Jun-2005.) |
| ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | ||
| Theorem | cnvso 6277 | The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.) |
| ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | ||
| Theorem | xpco 6278 | Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
| ⊢ (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶)) | ||
| Theorem | xpcoid 6279 | Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) | ||
| Theorem | elsnxp 6280* | Membership in a Cartesian product with a singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑍 = 〈𝑋, 𝑦〉)) | ||
| Theorem | reu3op 6281* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 1-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑌 𝜒 ∧ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑌 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) | ||
| Theorem | reuop 6282* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 23-Jun-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑌 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝜃 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) | ||
| Theorem | opreu2reurex 6283* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023.) (Revised by AV, 1-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) | ||
| Theorem | opreu2reu 6284* | If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023.) (Revised by AV, 2-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎 ∈ 𝐴 ∃!𝑏 ∈ 𝐵 𝜒) | ||
| Theorem | dfpo2 6285 | Quantifier-free definition of a partial ordering. (Contributed by Scott Fenton, 22-Feb-2013.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) | ||
| Theorem | csbcog 6286 | Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | snres0 6287 | Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) | ||
| Theorem | imaindm 6288 | The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) | ||
| Syntax | cpred 6289 | The predecessors symbol. |
| class Pred(𝑅, 𝐴, 𝑋) | ||
| Definition | df-pred 6290 | Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6307). (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | ||
| Theorem | predeq123 6291 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) | ||
| Theorem | predeq1 6292 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) | ||
| Theorem | predeq2 6293 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) | ||
| Theorem | predeq3 6294 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | ||
| Theorem | nfpred 6295 | Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑋 ⇒ ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) | ||
| Theorem | csbpredg 6296 | Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) | ||
| Theorem | predpredss 6297 | If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) | ||
| Theorem | predss 6298 | The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 | ||
| Theorem | sspred 6299 | Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011.) |
| ⊢ ((𝐵 ⊆ 𝐴 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) | ||
| Theorem | dfpred2 6300* | An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 8-Feb-2011.) |
| ⊢ 𝑋 ∈ V ⇒ ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |