| Metamath
Proof Explorer Theorem List (p. 63 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | op1sta 6201 | Extract the first member of an ordered pair. (See op2nda 6204 to extract the second member, op1stb 5434 for an alternate version, and op1st 7979 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 | ||
| Theorem | cnvsn 6202 | Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} | ||
| Theorem | op2ndb 6203 | Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 5434 to extract the first member, op2nda 6204 for an alternate version, and op2nd 7980 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 | ||
| Theorem | op2nda 6204 | Extract the second member of an ordered pair. (See op1sta 6201 to extract the first member, op2ndb 6203 for an alternate version, and op2nd 7980 for the preferred version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 | ||
| Theorem | opswap 6205 | Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ∪ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 | ||
| Theorem | cnvresima 6206 | An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
| ⊢ (◡(𝐹 ↾ 𝐴) “ 𝐵) = ((◡𝐹 “ 𝐵) ∩ 𝐴) | ||
| Theorem | resdm2 6207 | A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (𝐴 ↾ dom 𝐴) = ◡◡𝐴 | ||
| Theorem | resdmres 6208 | Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (𝐴 ↾ dom (𝐴 ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
| Theorem | resresdm 6209 | A restriction by an arbitrary set is a restriction by its domain. (Contributed by AV, 16-Nov-2020.) |
| ⊢ (𝐹 = (𝐸 ↾ 𝐴) → 𝐹 = (𝐸 ↾ dom 𝐹)) | ||
| Theorem | imadmres 6210 | The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.) |
| ⊢ (𝐴 “ dom (𝐴 ↾ 𝐵)) = (𝐴 “ 𝐵) | ||
| Theorem | resdmss 6211 | Subset relationship for the domain of a restriction. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ dom (𝐴 ↾ 𝐵) ⊆ 𝐵 | ||
| Theorem | resdifdi 6212 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
| ⊢ (𝐴 ↾ (𝐵 ∖ 𝐶)) = ((𝐴 ↾ 𝐵) ∖ (𝐴 ↾ 𝐶)) | ||
| Theorem | resdifdir 6213 | Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024.) |
| ⊢ ((𝐴 ∖ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∖ (𝐵 ↾ 𝐶)) | ||
| Theorem | mptpreima 6214* | The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} | ||
| Theorem | mptiniseg 6215* | Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) | ||
| Theorem | dmmpt 6216 | The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | ||
| Theorem | dmmptss 6217* | The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
| Theorem | dmmptg 6218* | The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | ||
| Theorem | rnmpt0f 6219* | The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) | ||
| Theorem | rnmptn0 6220* | The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ran 𝐹 ≠ ∅) | ||
| Theorem | dfco2 6221* | Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
| ⊢ (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ V ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) | ||
| Theorem | dfco2a 6222* | Generalization of dfco2 6221, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 ((◡𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))) | ||
| Theorem | coundi 6223 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∘ (𝐵 ∪ 𝐶)) = ((𝐴 ∘ 𝐵) ∪ (𝐴 ∘ 𝐶)) | ||
| Theorem | coundir 6224 | Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) ∘ 𝐶) = ((𝐴 ∘ 𝐶) ∪ (𝐵 ∘ 𝐶)) | ||
| Theorem | cores 6225 | Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (ran 𝐵 ⊆ 𝐶 → ((𝐴 ↾ 𝐶) ∘ 𝐵) = (𝐴 ∘ 𝐵)) | ||
| Theorem | resco 6226 | Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
| ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) | ||
| Theorem | imaco 6227 | Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) (Proof shortened by Wolf Lammen, 16-May-2025.) |
| ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) | ||
| Theorem | rnco 6228 | The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | ||
| Theorem | rnco2 6229 | The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
| ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) | ||
| Theorem | dmco 6230 | The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.) |
| ⊢ dom (𝐴 ∘ 𝐵) = (◡𝐵 “ dom 𝐴) | ||
| Theorem | coeq0 6231 | A composition of two relations is empty iff there is no overlap between the range of the second and the domain of the first. Useful in combination with coundi 6223 and coundir 6224 to prune meaningless terms in the result. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) | ||
| Theorem | coiun 6232* | Composition with an indexed union. (Contributed by NM, 21-Dec-2008.) |
| ⊢ (𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
| Theorem | cocnvcnv1 6233 | A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.) |
| ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | ||
| Theorem | cocnvcnv2 6234 | A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.) |
| ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) | ||
| Theorem | cores2 6235 | Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.) |
| ⊢ (dom 𝐴 ⊆ 𝐶 → (𝐴 ∘ ◡(◡𝐵 ↾ 𝐶)) = (𝐴 ∘ 𝐵)) | ||
| Theorem | co02 6236 | Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐴 ∘ ∅) = ∅ | ||
| Theorem | co01 6237 | Composition with the empty set. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (∅ ∘ 𝐴) = ∅ | ||
| Theorem | coi1 6238 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| ⊢ (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴) | ||
| Theorem | coi2 6239 | Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) | ||
| Theorem | coires1 6240 | Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐴 ∘ ( I ↾ 𝐵)) = (𝐴 ↾ 𝐵) | ||
| Theorem | coass 6241 | Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
| ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) | ||
| Theorem | relcnvtrg 6242 | General form of relcnvtr 6243. (Contributed by Peter Mazsa, 17-Oct-2023.) |
| ⊢ ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅 ∘ 𝑆) ⊆ 𝑇 ↔ (◡𝑆 ∘ ◡𝑅) ⊆ ◡𝑇)) | ||
| Theorem | relcnvtr 6243 | A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.) (Proof shortened by Peter Mazsa, 17-Oct-2023.) |
| ⊢ (Rel 𝑅 → ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅)) | ||
| Theorem | relssdmrn 6244 | A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.) |
| ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | ||
| Theorem | relssdmrnOLD 6245 | Obsolete version of relssdmrn 6244 as of 23-Dec-2024. (Contributed by NM, 3-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | ||
| Theorem | resssxp 6246 | If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) | ||
| Theorem | cnvssrndm 6247 | The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) | ||
| Theorem | cossxp 6248 | Composition as a subset of the Cartesian product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) | ||
| Theorem | relrelss 6249 | Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.) |
| ⊢ ((Rel 𝐴 ∧ Rel dom 𝐴) ↔ 𝐴 ⊆ ((V × V) × V)) | ||
| Theorem | unielrel 6250 | The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
| ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) | ||
| Theorem | relfld 6251 | The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.) |
| ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | ||
| Theorem | relresfld 6252 | Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.) |
| ⊢ (Rel 𝑅 → (𝑅 ↾ ∪ ∪ 𝑅) = 𝑅) | ||
| Theorem | relcoi2 6253 | Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.) |
| ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) | ||
| Theorem | relcoi1 6254 | Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ (Rel 𝑅 → (𝑅 ∘ ( I ↾ ∪ ∪ 𝑅)) = 𝑅) | ||
| Theorem | unidmrn 6255 | The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
| ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) | ||
| Theorem | relcnvfld 6256 | if 𝑅 is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.) |
| ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) | ||
| Theorem | dfdm2 6257 | Alternate definition of domain df-dm 5651 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
| ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) | ||
| Theorem | unixp 6258 | The double class union of a nonempty Cartesian product is the union of it members. (Contributed by NM, 17-Sep-2006.) |
| ⊢ ((𝐴 × 𝐵) ≠ ∅ → ∪ ∪ (𝐴 × 𝐵) = (𝐴 ∪ 𝐵)) | ||
| Theorem | unixp0 6259 | A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006.) |
| ⊢ ((𝐴 × 𝐵) = ∅ ↔ ∪ (𝐴 × 𝐵) = ∅) | ||
| Theorem | unixpid 6260 | Field of a Cartesian square. (Contributed by FL, 10-Oct-2009.) |
| ⊢ ∪ ∪ (𝐴 × 𝐴) = 𝐴 | ||
| Theorem | ressn 6261 | Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵})) | ||
| Theorem | cnviin 6262* | The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012.) |
| ⊢ (𝐴 ≠ ∅ → ◡∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 ◡𝐵) | ||
| Theorem | cnvpo 6263 | The converse of a partial order is a partial order. (Contributed by NM, 15-Jun-2005.) |
| ⊢ (𝑅 Po 𝐴 ↔ ◡𝑅 Po 𝐴) | ||
| Theorem | cnvso 6264 | The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.) |
| ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | ||
| Theorem | xpco 6265 | Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
| ⊢ (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶)) | ||
| Theorem | xpcoid 6266 | Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) | ||
| Theorem | elsnxp 6267* | Membership in a Cartesian product with a singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) (Proof shortened by JJ, 14-Jul-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑍 = 〈𝑋, 𝑦〉)) | ||
| Theorem | reu3op 6268* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 1-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑌 𝜒 ∧ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑌 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) | ||
| Theorem | reuop 6269* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 23-Jun-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜓 ↔ 𝜒)) & ⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (∃!𝑝 ∈ (𝑋 × 𝑌)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑌 (𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝜃 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) | ||
| Theorem | opreu2reurex 6270* | There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023.) (Revised by AV, 1-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) | ||
| Theorem | opreu2reu 6271* | If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023.) (Revised by AV, 2-Jul-2023.) |
| ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎 ∈ 𝐴 ∃!𝑏 ∈ 𝐵 𝜒) | ||
| Theorem | dfpo2 6272 | Quantifier-free definition of a partial ordering. (Contributed by Scott Fenton, 22-Feb-2013.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝑅 Po 𝐴 ↔ ((𝑅 ∩ ( I ↾ 𝐴)) = ∅ ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅)) | ||
| Theorem | csbcog 6273 | Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | snres0 6274 | Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) | ||
| Theorem | imaindm 6275 | The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.) |
| ⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) | ||
| Syntax | cpred 6276 | The predecessors symbol. |
| class Pred(𝑅, 𝐴, 𝑋) | ||
| Definition | df-pred 6277 | Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6294). (Contributed by Scott Fenton, 29-Jan-2011.) |
| ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | ||
| Theorem | predeq123 6278 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) | ||
| Theorem | predeq1 6279 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) | ||
| Theorem | predeq2 6280 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) | ||
| Theorem | predeq3 6281 | Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌)) | ||
| Theorem | nfpred 6282 | Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝑋 ⇒ ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑋) | ||
| Theorem | csbpredg 6283 | Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑋) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑋)) | ||
| Theorem | predpredss 6284 | If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) | ||
| Theorem | predss 6285 | The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 | ||
| Theorem | sspred 6286 | Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011.) |
| ⊢ ((𝐵 ⊆ 𝐴 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) | ||
| Theorem | dfpred2 6287* | An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 8-Feb-2011.) |
| ⊢ 𝑋 ∈ V ⇒ ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑋}) | ||
| Theorem | dfpred3 6288* | An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ 𝑋 ∈ V ⇒ ⊢ Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | ||
| Theorem | dfpred3g 6289* | An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑋 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋}) | ||
| Theorem | elpredgg 6290 | Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) Generalize to closed form. (Revised by BJ, 16-Oct-2024.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | ||
| Theorem | elpredg 6291 | Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
| ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋)) | ||
| Theorem | elpredimg 6292 | Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.) (Proof shortened by BJ, 16-Oct-2024.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋) | ||
| Theorem | elpredim 6293 | Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.) (Proof shortened by BJ, 16-Oct-2024.) |
| ⊢ 𝑋 ∈ V ⇒ ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋) | ||
| Theorem | elpred 6294 | Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.) (Proof shortened by BJ, 16-Oct-2024.) |
| ⊢ 𝑌 ∈ V ⇒ ⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋))) | ||
| Theorem | predexg 6295 | The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V) | ||
| Theorem | dffr4 6296* | Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011.) |
| ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅)) | ||
| Theorem | predel 6297 | Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.) |
| ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌 ∈ 𝐴) | ||
| Theorem | predtrss 6298 | If 𝑅 is transitive over 𝐴 and 𝑌𝑅𝑋, then Pred(𝑅, 𝐴, 𝑌) is a subclass of Pred(𝑅, 𝐴, 𝑋). (Contributed by Scott Fenton, 28-Oct-2024.) |
| ⊢ ((((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ 𝑅 ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑋 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)) | ||
| Theorem | predpo 6299 | Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012.) (Proof shortened by Scott Fenton, 28-Oct-2024.) |
| ⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) | ||
| Theorem | predso 6300 | Property of the predecessor class for strict total orders. (Contributed by Scott Fenton, 11-Feb-2011.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |