![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indifdir | Structured version Visualization version GIF version |
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by BTernaryTau, 14-Aug-2024.) |
Ref | Expression |
---|---|
indifdir | ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdi 4300 | . 2 ⊢ (𝐶 ∩ (𝐴 ∖ 𝐵)) = ((𝐶 ∩ 𝐴) ∖ (𝐶 ∩ 𝐵)) | |
2 | incom 4217 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴 ∖ 𝐵)) | |
3 | incom 4217 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
4 | incom 4217 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
5 | 3, 4 | difeq12i 4134 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) = ((𝐶 ∩ 𝐴) ∖ (𝐶 ∩ 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2773 | 1 ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3960 ∩ cin 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 |
This theorem is referenced by: resdifdir 6259 preddif 6352 fresaun 6780 uniioombllem4 25635 subsalsal 46315 |
Copyright terms: Public domain | W3C validator |