Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indifdir | Structured version Visualization version GIF version |
Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by BTernaryTau, 14-Aug-2024.) |
Ref | Expression |
---|---|
indifdir | ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdi 4214 | . 2 ⊢ (𝐶 ∩ (𝐴 ∖ 𝐵)) = ((𝐶 ∩ 𝐴) ∖ (𝐶 ∩ 𝐵)) | |
2 | incom 4131 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴 ∖ 𝐵)) | |
3 | incom 4131 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐶 ∩ 𝐴) | |
4 | incom 4131 | . . 3 ⊢ (𝐵 ∩ 𝐶) = (𝐶 ∩ 𝐵) | |
5 | 3, 4 | difeq12i 4051 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) = ((𝐶 ∩ 𝐴) ∖ (𝐶 ∩ 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2776 | 1 ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 |
This theorem is referenced by: resdifdir 6129 preddif 6221 fresaun 6629 uniioombllem4 24655 subsalsal 43788 |
Copyright terms: Public domain | W3C validator |