Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq12i | Structured version Visualization version GIF version |
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
difeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
difeq12i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | difeq1i 4049 | . 2 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
3 | difeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | difeq2i 4050 | . 2 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
5 | 2, 4 | eqtri 2766 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-dif 3886 |
This theorem is referenced by: indifdir 4215 difrab 4239 resdifdi 6128 resdifdir 6129 preddif 6221 infdju1 9876 uniioombllem4 24655 clwwlknclwwlkdif 28244 gtiso 30935 satffunlem2lem2 33268 mthmpps 33444 new0 33985 zrdivrng 36038 isdrngo1 36041 pwfi2f1o 40837 salexct2 43768 dfnelbr2 44652 |
Copyright terms: Public domain | W3C validator |