MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difeq12i Structured version   Visualization version   GIF version

Theorem difeq12i 4055
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1 𝐴 = 𝐵
difeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
difeq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3 𝐴 = 𝐵
21difeq1i 4053 . 2 (𝐴𝐶) = (𝐵𝐶)
3 difeq12i.2 . . 3 𝐶 = 𝐷
43difeq2i 4054 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2766 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-dif 3890
This theorem is referenced by:  indifdir  4218  difrab  4242  resdifdi  6139  resdifdir  6140  preddif  6232  infdju1  9945  uniioombllem4  24750  clwwlknclwwlkdif  28343  gtiso  31033  satffunlem2lem2  33368  mthmpps  33544  new0  34058  zrdivrng  36111  isdrngo1  36114  pwfi2f1o  40921  salexct2  43878  dfnelbr2  44765
  Copyright terms: Public domain W3C validator