MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difeq12i Structured version   Visualization version   GIF version

Theorem difeq12i 4090
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1 𝐴 = 𝐵
difeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
difeq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3 𝐴 = 𝐵
21difeq1i 4088 . 2 (𝐴𝐶) = (𝐵𝐶)
3 difeq12i.2 . . 3 𝐶 = 𝐷
43difeq2i 4089 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2753 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-dif 3920
This theorem is referenced by:  indifdir  4261  difrab  4284  resdifdi  6212  resdifdir  6213  preddif  6305  infdju1  10150  uniioombllem4  25494  new0  27793  clwwlknclwwlkdif  29915  gtiso  32631  satffunlem2lem2  35400  mthmpps  35576  zrdivrng  37954  isdrngo1  37957  pwfi2f1o  43092  salexct2  46344  dfnelbr2  47278
  Copyright terms: Public domain W3C validator