| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| difeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| difeq12i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | difeq1i 4102 | . 2 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| 3 | difeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | difeq2i 4103 | . 2 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
| 5 | 2, 4 | eqtri 2759 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-dif 3934 |
| This theorem is referenced by: indifdir 4275 difrab 4298 resdifdi 6230 resdifdir 6231 preddif 6323 infdju1 10209 uniioombllem4 25544 new0 27843 clwwlknclwwlkdif 29965 gtiso 32683 satffunlem2lem2 35433 mthmpps 35609 zrdivrng 37982 isdrngo1 37985 pwfi2f1o 43087 salexct2 46335 dfnelbr2 47269 |
| Copyright terms: Public domain | W3C validator |