| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| difeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| difeq12i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | difeq1i 4081 | . 2 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| 3 | difeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | difeq2i 4082 | . 2 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
| 5 | 2, 4 | eqtri 2752 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-dif 3914 |
| This theorem is referenced by: indifdir 4254 difrab 4277 resdifdi 6197 resdifdir 6198 preddif 6290 infdju1 10119 uniioombllem4 25520 new0 27823 clwwlknclwwlkdif 29958 gtiso 32674 satffunlem2lem2 35386 mthmpps 35562 zrdivrng 37940 isdrngo1 37943 pwfi2f1o 43078 salexct2 46330 dfnelbr2 47267 |
| Copyright terms: Public domain | W3C validator |