Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq12i | Structured version Visualization version GIF version |
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
difeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
difeq12i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | difeq1i 4053 | . 2 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
3 | difeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | difeq2i 4054 | . 2 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
5 | 2, 4 | eqtri 2766 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-dif 3890 |
This theorem is referenced by: indifdir 4218 difrab 4242 resdifdi 6139 resdifdir 6140 preddif 6232 infdju1 9945 uniioombllem4 24750 clwwlknclwwlkdif 28343 gtiso 31033 satffunlem2lem2 33368 mthmpps 33544 new0 34058 zrdivrng 36111 isdrngo1 36114 pwfi2f1o 40921 salexct2 43878 dfnelbr2 44765 |
Copyright terms: Public domain | W3C validator |