| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| difeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| difeq12i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | difeq1i 4085 | . 2 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
| 3 | difeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | difeq2i 4086 | . 2 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
| 5 | 2, 4 | eqtri 2752 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-dif 3917 |
| This theorem is referenced by: indifdir 4258 difrab 4281 resdifdi 6209 resdifdir 6210 preddif 6302 infdju1 10143 uniioombllem4 25487 new0 27786 clwwlknclwwlkdif 29908 gtiso 32624 satffunlem2lem2 35393 mthmpps 35569 zrdivrng 37947 isdrngo1 37950 pwfi2f1o 43085 salexct2 46337 dfnelbr2 47274 |
| Copyright terms: Public domain | W3C validator |