MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difeq12i Structured version   Visualization version   GIF version

Theorem difeq12i 4083
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1 𝐴 = 𝐵
difeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
difeq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3 𝐴 = 𝐵
21difeq1i 4081 . 2 (𝐴𝐶) = (𝐵𝐶)
3 difeq12i.2 . . 3 𝐶 = 𝐷
43difeq2i 4082 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2752 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-dif 3914
This theorem is referenced by:  indifdir  4254  difrab  4277  resdifdi  6197  resdifdir  6198  preddif  6290  infdju1  10119  uniioombllem4  25463  new0  27762  clwwlknclwwlkdif  29881  gtiso  32597  satffunlem2lem2  35366  mthmpps  35542  zrdivrng  37920  isdrngo1  37923  pwfi2f1o  43058  salexct2  46310  dfnelbr2  47247
  Copyright terms: Public domain W3C validator