MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difeq12i Structured version   Visualization version   GIF version

Theorem difeq12i 4071
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1 𝐴 = 𝐵
difeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
difeq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3 𝐴 = 𝐵
21difeq1i 4069 . 2 (𝐴𝐶) = (𝐵𝐶)
3 difeq12i.2 . . 3 𝐶 = 𝐷
43difeq2i 4070 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2754 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-dif 3900
This theorem is referenced by:  indifdir  4242  difrab  4265  resdifdi  6183  resdifdir  6184  preddif  6276  infdju1  10081  uniioombllem4  25514  new0  27819  clwwlknclwwlkdif  29959  gtiso  32682  satffunlem2lem2  35450  mthmpps  35626  zrdivrng  38003  isdrngo1  38006  pwfi2f1o  43199  salexct2  46447  dfnelbr2  47383
  Copyright terms: Public domain W3C validator