| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptpreima | Structured version Visualization version GIF version | ||
| Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptpreima | ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | df-mpt 5206 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 1, 2 | eqtri 2757 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 4 | 3 | cnveqi 5865 | . . . 4 ⊢ ◡𝐹 = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 5 | cnvopab 6137 | . . . 4 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 6 | 4, 5 | eqtri 2757 | . . 3 ⊢ ◡𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 7 | 6 | imaeq1i 6055 | . 2 ⊢ (◡𝐹 “ 𝐶) = ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) |
| 8 | df-ima 5678 | . . 3 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) | |
| 9 | resopab 6032 | . . . . 5 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
| 10 | 9 | rneqi 5928 | . . . 4 ⊢ ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} |
| 11 | ancom 460 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶)) | |
| 12 | anass 468 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 13 | 11, 12 | bitri 275 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 14 | 13 | exbii 1847 | . . . . . . 7 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 15 | 19.42v 1952 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 16 | dfclel 2809 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐶 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 17 | 16 | bicomi 224 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶) |
| 18 | 17 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
| 19 | 15, 18 | bitri 275 | . . . . . . 7 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
| 20 | 14, 19 | bitri 275 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
| 21 | 20 | abbii 2801 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} |
| 22 | rnopab 5945 | . . . . 5 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
| 23 | df-rab 3420 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} | |
| 24 | 21, 22, 23 | 3eqtr4i 2767 | . . . 4 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| 25 | 10, 24 | eqtri 2757 | . . 3 ⊢ ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| 26 | 8, 25 | eqtri 2757 | . 2 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| 27 | 7, 26 | eqtri 2757 | 1 ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 {crab 3419 {copab 5185 ↦ cmpt 5205 ◡ccnv 5664 ran crn 5666 ↾ cres 5667 “ cima 5668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 |
| This theorem is referenced by: mptiniseg 6239 dmmpt 6240 fmpt 7110 f1oresrab 7127 mptsuppdifd 8193 r0weon 10034 compss 10398 infrenegsup 12233 eqglact 19167 odngen 19564 pjdm 21682 psrbagsn 22036 coe1mul2lem2 22220 xkoccn 23574 txcnmpt 23579 txdis1cn 23590 pthaus 23593 txkgen 23607 xkoco1cn 23612 xkoco2cn 23613 xkoinjcn 23642 txconn 23644 imasnopn 23645 imasncld 23646 imasncls 23647 ptcmplem1 24007 ptcmplem3 24009 ptcmplem4 24010 tmdgsum2 24051 symgtgp 24061 tgpconncompeqg 24067 ghmcnp 24070 tgpt0 24074 qustgpopn 24075 qustgphaus 24078 eltsms 24088 prdsxmslem2 24487 efopn 26637 atansopn 26912 xrlimcnp 26948 fpwrelmapffslem 32679 ptrest 37601 mbfposadd 37649 cnambfre 37650 itg2addnclem2 37654 iblabsnclem 37665 ftc1anclem1 37675 ftc1anclem6 37680 resuppsinopn 42372 pwfi2f1o 43086 smfpimioo 46774 |
| Copyright terms: Public domain | W3C validator |