MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptpreima Structured version   Visualization version   GIF version

Theorem mptpreima 6191
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpt.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptpreima (𝐹𝐶) = {𝑥𝐴𝐵𝐶}
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptpreima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dmmpt.1 . . . . . 6 𝐹 = (𝑥𝐴𝐵)
2 df-mpt 5177 . . . . . 6 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
31, 2eqtri 2752 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
43cnveqi 5821 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
5 cnvopab 6090 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
64, 5eqtri 2752 . . 3 𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
76imaeq1i 6012 . 2 (𝐹𝐶) = ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶)
8 df-ima 5636 . . 3 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶) = ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶)
9 resopab 5989 . . . . 5 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
109rneqi 5883 . . . 4 ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
11 ancom 460 . . . . . . . . 9 ((𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ ((𝑥𝐴𝑦 = 𝐵) ∧ 𝑦𝐶))
12 anass 468 . . . . . . . . 9 (((𝑥𝐴𝑦 = 𝐵) ∧ 𝑦𝐶) ↔ (𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
1311, 12bitri 275 . . . . . . . 8 ((𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ (𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
1413exbii 1848 . . . . . . 7 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ ∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)))
15 19.42v 1953 . . . . . . . 8 (∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝑦𝐶)))
16 dfclel 2804 . . . . . . . . . 10 (𝐵𝐶 ↔ ∃𝑦(𝑦 = 𝐵𝑦𝐶))
1716bicomi 224 . . . . . . . . 9 (∃𝑦(𝑦 = 𝐵𝑦𝐶) ↔ 𝐵𝐶)
1817anbi2i 623 . . . . . . . 8 ((𝑥𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴𝐵𝐶))
1915, 18bitri 275 . . . . . . 7 (∃𝑦(𝑥𝐴 ∧ (𝑦 = 𝐵𝑦𝐶)) ↔ (𝑥𝐴𝐵𝐶))
2014, 19bitri 275 . . . . . 6 (∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵)) ↔ (𝑥𝐴𝐵𝐶))
2120abbii 2796 . . . . 5 {𝑥 ∣ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥 ∣ (𝑥𝐴𝐵𝐶)}
22 rnopab 5900 . . . . 5 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥 ∣ ∃𝑦(𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))}
23 df-rab 3397 . . . . 5 {𝑥𝐴𝐵𝐶} = {𝑥 ∣ (𝑥𝐴𝐵𝐶)}
2421, 22, 233eqtr4i 2762 . . . 4 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐶 ∧ (𝑥𝐴𝑦 = 𝐵))} = {𝑥𝐴𝐵𝐶}
2510, 24eqtri 2752 . . 3 ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↾ 𝐶) = {𝑥𝐴𝐵𝐶}
268, 25eqtri 2752 . 2 ({⟨𝑦, 𝑥⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} “ 𝐶) = {𝑥𝐴𝐵𝐶}
277, 26eqtri 2752 1 (𝐹𝐶) = {𝑥𝐴𝐵𝐶}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  {crab 3396  {copab 5157  cmpt 5176  ccnv 5622  ran crn 5624  cres 5625  cima 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636
This theorem is referenced by:  mptiniseg  6192  dmmpt  6193  fmpt  7048  f1oresrab  7065  mptsuppdifd  8126  r0weon  9925  compss  10289  infrenegsup  12126  eqglact  19076  odngen  19474  pjdm  21632  psrbagsn  21986  coe1mul2lem2  22170  xkoccn  23522  txcnmpt  23527  txdis1cn  23538  pthaus  23541  txkgen  23555  xkoco1cn  23560  xkoco2cn  23561  xkoinjcn  23590  txconn  23592  imasnopn  23593  imasncld  23594  imasncls  23595  ptcmplem1  23955  ptcmplem3  23957  ptcmplem4  23958  tmdgsum2  23999  symgtgp  24009  tgpconncompeqg  24015  ghmcnp  24018  tgpt0  24022  qustgpopn  24023  qustgphaus  24026  eltsms  24036  prdsxmslem2  24433  efopn  26583  atansopn  26858  xrlimcnp  26894  fpwrelmapffslem  32688  ptrest  37598  mbfposadd  37646  cnambfre  37647  itg2addnclem2  37651  iblabsnclem  37662  ftc1anclem1  37672  ftc1anclem6  37677  resuppsinopn  42336  pwfi2f1o  43069  smfpimioo  46769
  Copyright terms: Public domain W3C validator