| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptpreima | Structured version Visualization version GIF version | ||
| Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| mptpreima | ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpt.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | df-mpt 5192 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 1, 2 | eqtri 2753 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 4 | 3 | cnveqi 5841 | . . . 4 ⊢ ◡𝐹 = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 5 | cnvopab 6113 | . . . 4 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 6 | 4, 5 | eqtri 2753 | . . 3 ⊢ ◡𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
| 7 | 6 | imaeq1i 6031 | . 2 ⊢ (◡𝐹 “ 𝐶) = ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) |
| 8 | df-ima 5654 | . . 3 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) | |
| 9 | resopab 6008 | . . . . 5 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
| 10 | 9 | rneqi 5904 | . . . 4 ⊢ ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} |
| 11 | ancom 460 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶)) | |
| 12 | anass 468 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 13 | 11, 12 | bitri 275 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 14 | 13 | exbii 1848 | . . . . . . 7 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
| 15 | 19.42v 1953 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 16 | dfclel 2805 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐶 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 17 | 16 | bicomi 224 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶) |
| 18 | 17 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
| 19 | 15, 18 | bitri 275 | . . . . . . 7 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
| 20 | 14, 19 | bitri 275 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
| 21 | 20 | abbii 2797 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} |
| 22 | rnopab 5921 | . . . . 5 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
| 23 | df-rab 3409 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} | |
| 24 | 21, 22, 23 | 3eqtr4i 2763 | . . . 4 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| 25 | 10, 24 | eqtri 2753 | . . 3 ⊢ ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| 26 | 8, 25 | eqtri 2753 | . 2 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| 27 | 7, 26 | eqtri 2753 | 1 ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 {crab 3408 {copab 5172 ↦ cmpt 5191 ◡ccnv 5640 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: mptiniseg 6215 dmmpt 6216 fmpt 7085 f1oresrab 7102 mptsuppdifd 8168 r0weon 9972 compss 10336 infrenegsup 12173 eqglact 19118 odngen 19514 pjdm 21623 psrbagsn 21977 coe1mul2lem2 22161 xkoccn 23513 txcnmpt 23518 txdis1cn 23529 pthaus 23532 txkgen 23546 xkoco1cn 23551 xkoco2cn 23552 xkoinjcn 23581 txconn 23583 imasnopn 23584 imasncld 23585 imasncls 23586 ptcmplem1 23946 ptcmplem3 23948 ptcmplem4 23949 tmdgsum2 23990 symgtgp 24000 tgpconncompeqg 24006 ghmcnp 24009 tgpt0 24013 qustgpopn 24014 qustgphaus 24017 eltsms 24027 prdsxmslem2 24424 efopn 26574 atansopn 26849 xrlimcnp 26885 fpwrelmapffslem 32662 ptrest 37620 mbfposadd 37668 cnambfre 37669 itg2addnclem2 37673 iblabsnclem 37684 ftc1anclem1 37694 ftc1anclem6 37699 resuppsinopn 42358 pwfi2f1o 43092 smfpimioo 46792 |
| Copyright terms: Public domain | W3C validator |