![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptpreima | Structured version Visualization version GIF version |
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptpreima | ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | df-mpt 5232 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 1, 2 | eqtri 2763 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
4 | 3 | cnveqi 5888 | . . . 4 ⊢ ◡𝐹 = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | cnvopab 6160 | . . . 4 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
6 | 4, 5 | eqtri 2763 | . . 3 ⊢ ◡𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
7 | 6 | imaeq1i 6077 | . 2 ⊢ (◡𝐹 “ 𝐶) = ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) |
8 | df-ima 5702 | . . 3 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) | |
9 | resopab 6054 | . . . . 5 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
10 | 9 | rneqi 5951 | . . . 4 ⊢ ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} |
11 | ancom 460 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶)) | |
12 | anass 468 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
13 | 11, 12 | bitri 275 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
14 | 13 | exbii 1845 | . . . . . . 7 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
15 | 19.42v 1951 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
16 | dfclel 2815 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐶 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
17 | 16 | bicomi 224 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶) |
18 | 17 | anbi2i 623 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
19 | 15, 18 | bitri 275 | . . . . . . 7 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
20 | 14, 19 | bitri 275 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
21 | 20 | abbii 2807 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} |
22 | rnopab 5968 | . . . . 5 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
23 | df-rab 3434 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} | |
24 | 21, 22, 23 | 3eqtr4i 2773 | . . . 4 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
25 | 10, 24 | eqtri 2763 | . . 3 ⊢ ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
26 | 8, 25 | eqtri 2763 | . 2 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
27 | 7, 26 | eqtri 2763 | 1 ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 {crab 3433 {copab 5210 ↦ cmpt 5231 ◡ccnv 5688 ran crn 5690 ↾ cres 5691 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: mptiniseg 6261 dmmpt 6262 fmpt 7130 f1oresrab 7147 mptsuppdifd 8210 r0weon 10050 compss 10414 infrenegsup 12249 eqglact 19210 odngen 19610 pjdm 21745 psrbagsn 22105 coe1mul2lem2 22287 xkoccn 23643 txcnmpt 23648 txdis1cn 23659 pthaus 23662 txkgen 23676 xkoco1cn 23681 xkoco2cn 23682 xkoinjcn 23711 txconn 23713 imasnopn 23714 imasncld 23715 imasncls 23716 ptcmplem1 24076 ptcmplem3 24078 ptcmplem4 24079 tmdgsum2 24120 symgtgp 24130 tgpconncompeqg 24136 ghmcnp 24139 tgpt0 24143 qustgpopn 24144 qustgphaus 24147 eltsms 24157 prdsxmslem2 24558 efopn 26715 atansopn 26990 xrlimcnp 27026 fpwrelmapffslem 32750 ptrest 37606 mbfposadd 37654 cnambfre 37655 itg2addnclem2 37659 iblabsnclem 37670 ftc1anclem1 37680 ftc1anclem6 37685 pwfi2f1o 43085 smfpimioo 46743 |
Copyright terms: Public domain | W3C validator |