![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptpreima | Structured version Visualization version GIF version |
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptpreima | ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | df-mpt 5193 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 1, 2 | eqtri 2761 | . . . . 5 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
4 | 3 | cnveqi 5834 | . . . 4 ⊢ ◡𝐹 = ◡{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | cnvopab 6095 | . . . 4 ⊢ ◡{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
6 | 4, 5 | eqtri 2761 | . . 3 ⊢ ◡𝐹 = {⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
7 | 6 | imaeq1i 6014 | . 2 ⊢ (◡𝐹 “ 𝐶) = ({⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) |
8 | df-ima 5650 | . . 3 ⊢ ({⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) | |
9 | resopab 5992 | . . . . 5 ⊢ ({⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
10 | 9 | rneqi 5896 | . . . 4 ⊢ ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} |
11 | ancom 462 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶)) | |
12 | anass 470 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
13 | 11, 12 | bitri 275 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
14 | 13 | exbii 1851 | . . . . . . 7 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
15 | 19.42v 1958 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
16 | dfclel 2812 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐶 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
17 | 16 | bicomi 223 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶) |
18 | 17 | anbi2i 624 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
19 | 15, 18 | bitri 275 | . . . . . . 7 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
20 | 14, 19 | bitri 275 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
21 | 20 | abbii 2803 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} |
22 | rnopab 5913 | . . . . 5 ⊢ ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
23 | df-rab 3407 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} | |
24 | 21, 22, 23 | 3eqtr4i 2771 | . . . 4 ⊢ ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
25 | 10, 24 | eqtri 2761 | . . 3 ⊢ ran ({⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
26 | 8, 25 | eqtri 2761 | . 2 ⊢ ({⟨𝑦, 𝑥⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
27 | 7, 26 | eqtri 2761 | 1 ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 {crab 3406 {copab 5171 ↦ cmpt 5192 ◡ccnv 5636 ran crn 5638 ↾ cres 5639 “ cima 5640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-mpt 5193 df-xp 5643 df-rel 5644 df-cnv 5645 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 |
This theorem is referenced by: mptiniseg 6195 dmmpt 6196 fmpt 7062 f1oresrab 7077 mptsuppdifd 8121 r0weon 9956 compss 10320 infrenegsup 12146 eqglact 18989 odngen 19367 pjdm 21136 psrbagsn 21494 coe1mul2lem2 21662 xkoccn 22993 txcnmpt 22998 txdis1cn 23009 pthaus 23012 txkgen 23026 xkoco1cn 23031 xkoco2cn 23032 xkoinjcn 23061 txconn 23063 imasnopn 23064 imasncld 23065 imasncls 23066 ptcmplem1 23426 ptcmplem3 23428 ptcmplem4 23429 tmdgsum2 23470 symgtgp 23480 tgpconncompeqg 23486 ghmcnp 23489 tgpt0 23493 qustgpopn 23494 qustgphaus 23497 eltsms 23507 prdsxmslem2 23908 efopn 26036 atansopn 26305 xrlimcnp 26341 fpwrelmapffslem 31703 ptrest 36127 mbfposadd 36175 cnambfre 36176 itg2addnclem2 36180 iblabsnclem 36191 ftc1anclem1 36201 ftc1anclem6 36206 pwfi2f1o 41470 smfpimioo 45118 |
Copyright terms: Public domain | W3C validator |