![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptpreima | Structured version Visualization version GIF version |
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
dmmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptpreima | ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | df-mpt 5250 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 1, 2 | eqtri 2768 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
4 | 3 | cnveqi 5899 | . . . 4 ⊢ ◡𝐹 = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
5 | cnvopab 6169 | . . . 4 ⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
6 | 4, 5 | eqtri 2768 | . . 3 ⊢ ◡𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
7 | 6 | imaeq1i 6086 | . 2 ⊢ (◡𝐹 “ 𝐶) = ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) |
8 | df-ima 5713 | . . 3 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) | |
9 | resopab 6063 | . . . . 5 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
10 | 9 | rneqi 5962 | . . . 4 ⊢ ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} |
11 | ancom 460 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶)) | |
12 | anass 468 | . . . . . . . . 9 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
13 | 11, 12 | bitri 275 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
14 | 13 | exbii 1846 | . . . . . . 7 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) |
15 | 19.42v 1953 | . . . . . . . 8 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
16 | dfclel 2820 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐶 ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
17 | 16 | bicomi 224 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶) |
18 | 17 | anbi2i 622 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
19 | 15, 18 | bitri 275 | . . . . . . 7 ⊢ (∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
20 | 14, 19 | bitri 275 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)) |
21 | 20 | abbii 2812 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} |
22 | rnopab 5979 | . . . . 5 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} | |
23 | df-rab 3444 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶)} | |
24 | 21, 22, 23 | 3eqtr4i 2778 | . . . 4 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵))} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
25 | 10, 24 | eqtri 2768 | . . 3 ⊢ ran ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↾ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
26 | 8, 25 | eqtri 2768 | . 2 ⊢ ({〈𝑦, 𝑥〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
27 | 7, 26 | eqtri 2768 | 1 ⊢ (◡𝐹 “ 𝐶) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 {crab 3443 {copab 5228 ↦ cmpt 5249 ◡ccnv 5699 ran crn 5701 ↾ cres 5702 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: mptiniseg 6270 dmmpt 6271 fmpt 7144 f1oresrab 7161 mptsuppdifd 8227 r0weon 10081 compss 10445 infrenegsup 12278 eqglact 19219 odngen 19619 pjdm 21750 psrbagsn 22110 coe1mul2lem2 22292 xkoccn 23648 txcnmpt 23653 txdis1cn 23664 pthaus 23667 txkgen 23681 xkoco1cn 23686 xkoco2cn 23687 xkoinjcn 23716 txconn 23718 imasnopn 23719 imasncld 23720 imasncls 23721 ptcmplem1 24081 ptcmplem3 24083 ptcmplem4 24084 tmdgsum2 24125 symgtgp 24135 tgpconncompeqg 24141 ghmcnp 24144 tgpt0 24148 qustgpopn 24149 qustgphaus 24152 eltsms 24162 prdsxmslem2 24563 efopn 26718 atansopn 26993 xrlimcnp 27029 fpwrelmapffslem 32746 ptrest 37579 mbfposadd 37627 cnambfre 37628 itg2addnclem2 37632 iblabsnclem 37643 ftc1anclem1 37653 ftc1anclem6 37658 pwfi2f1o 43053 smfpimioo 46708 |
Copyright terms: Public domain | W3C validator |