| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubiia | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (inference form). (Contributed by NM, 14-Nov-2004.) |
| Ref | Expression |
|---|---|
| rmobiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reubiia | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobiia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | eubii 2585 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 4 | df-reu 3365 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-reu 3365 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃!weu 2568 ∃!wreu 3362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 df-reu 3365 |
| This theorem is referenced by: reubii 3373 reuanid 3375 riotaxfrd 7401 opreuopreu 8038 infempty 9526 |
| Copyright terms: Public domain | W3C validator |