Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
reubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
3 | 2 | reubidva 3334 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 ∃!wreu 3282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-mo 2538 df-eu 2567 df-reu 3286 |
This theorem is referenced by: reueqd 3362 sbcreu 3814 oawordeu 8417 xpf1o 8964 dfac2b 9932 creur 12013 creui 12014 divalg 16157 divalg2 16159 lubfval 18113 lubeldm 18116 lubval 18119 glbfval 18126 glbeldm 18129 glbval 18132 joineu 18145 meeteu 18159 dfod2 19216 ustuqtop 23443 addsq2reu 26633 addsqn2reu 26634 addsqrexnreu 26635 addsqnreup 26636 2sqreulem1 26639 2sqreunnlem1 26642 usgredg2vtxeuALT 27634 isfrgr 28669 frcond1 28675 frgr1v 28680 nfrgr2v 28681 frgr3v 28684 3vfriswmgr 28687 n4cyclfrgr 28700 eulplig 28892 riesz4 30471 cnlnadjeu 30485 poimirlem25 35846 poimirlem26 35847 hdmap1eulem 39878 hdmap1eulemOLDN 39879 hdmap14lem6 39929 reuf1odnf 44657 euoreqb 44659 joindm3 46321 meetdm3 46323 |
Copyright terms: Public domain | W3C validator |