Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
reubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
3 | 2 | reubidva 3320 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2109 ∃!wreu 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-mo 2541 df-eu 2570 df-reu 3072 |
This theorem is referenced by: reueqd 3348 sbcreu 3813 oawordeu 8362 xpf1o 8891 dfac2b 9870 creur 11950 creui 11951 divalg 16093 divalg2 16095 lubfval 18049 lubeldm 18052 lubval 18055 glbfval 18062 glbeldm 18065 glbval 18068 joineu 18081 meeteu 18095 dfod2 19152 ustuqtop 23379 addsq2reu 26569 addsqn2reu 26570 addsqrexnreu 26571 addsqnreup 26572 2sqreulem1 26575 2sqreunnlem1 26578 usgredg2vtxeuALT 27570 isfrgr 28603 frcond1 28609 frgr1v 28614 nfrgr2v 28615 frgr3v 28618 3vfriswmgr 28621 n4cyclfrgr 28634 eulplig 28826 riesz4 30405 cnlnadjeu 30419 poimirlem25 35781 poimirlem26 35782 hdmap1eulem 39815 hdmap1eulemOLDN 39816 hdmap14lem6 39866 reuf1odnf 44550 euoreqb 44552 joindm3 46215 meetdm3 46217 |
Copyright terms: Public domain | W3C validator |