| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rmobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | reubidva 3375 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∃!wreu 3357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 df-eu 2568 df-reu 3360 |
| This theorem is referenced by: reueqd 3400 sbcreu 3851 oawordeu 8567 xpf1o 9153 dfac2b 10145 creur 12234 creui 12235 divalg 16422 divalg2 16424 lubfval 18360 lubeldm 18363 lubval 18366 glbfval 18373 glbeldm 18376 glbval 18379 joineu 18392 meeteu 18406 dfod2 19545 ustuqtop 24185 addsq2reu 27403 addsqn2reu 27404 addsqrexnreu 27405 addsqnreup 27406 2sqreulem1 27409 2sqreunnlem1 27412 usgredg2vtxeuALT 29201 isfrgr 30241 frcond1 30247 frgr1v 30252 nfrgr2v 30253 frgr3v 30256 3vfriswmgr 30259 n4cyclfrgr 30272 eulplig 30466 riesz4 32045 cnlnadjeu 32059 poimirlem25 37669 poimirlem26 37670 hdmap1eulem 41841 hdmap1eulemOLDN 41842 hdmap14lem6 41892 reuf1odnf 47136 euoreqb 47138 isuspgrim0 47907 isuspgrimlem 47908 joindm3 48943 meetdm3 48945 upciclem1 49101 upfval2 49112 upfval3 49113 isuplem 49114 oppcup3lem 49139 isinito2lem 49383 |
| Copyright terms: Public domain | W3C validator |