| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rmobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | reubidva 3360 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ∃!wreu 3344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 df-eu 2564 df-reu 3347 |
| This theorem is referenced by: reueqd 3382 sbcreu 3827 oawordeu 8470 xpf1o 9052 dfac2b 10019 creur 12116 creui 12117 divalg 16311 divalg2 16313 lubfval 18251 lubeldm 18254 lubval 18257 glbfval 18264 glbeldm 18267 glbval 18270 joineu 18283 meeteu 18297 dfod2 19474 ustuqtop 24159 addsq2reu 27376 addsqn2reu 27377 addsqrexnreu 27378 addsqnreup 27379 2sqreulem1 27382 2sqreunnlem1 27385 usgredg2vtxeuALT 29198 isfrgr 30235 frcond1 30241 frgr1v 30246 nfrgr2v 30247 frgr3v 30250 3vfriswmgr 30253 n4cyclfrgr 30266 eulplig 30460 riesz4 32039 cnlnadjeu 32053 poimirlem25 37684 poimirlem26 37685 hdmap1eulem 41860 hdmap1eulemOLDN 41861 hdmap14lem6 41911 reuf1odnf 47137 euoreqb 47139 isuspgrim0 47924 isuspgrimlem 47925 joindm3 48999 meetdm3 49001 upciclem1 49197 upfval2 49208 upfval3 49209 isuplem 49210 oppcup3lem 49237 isinito2lem 49529 |
| Copyright terms: Public domain | W3C validator |