Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
reubidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 484 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
3 | 2 | reubidva 3300 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2110 ∃!wreu 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-mo 2539 df-eu 2568 df-reu 3068 |
This theorem is referenced by: reueqd 3327 sbcreu 3788 oawordeu 8283 xpf1o 8808 dfac2b 9744 creur 11824 creui 11825 divalg 15964 divalg2 15966 lubfval 17856 lubeldm 17859 lubval 17862 glbfval 17869 glbeldm 17872 glbval 17875 joineu 17888 meeteu 17902 dfod2 18955 ustuqtop 23144 addsq2reu 26321 addsqn2reu 26322 addsqrexnreu 26323 addsqnreup 26324 2sqreulem1 26327 2sqreunnlem1 26330 usgredg2vtxeuALT 27310 isfrgr 28343 frcond1 28349 frgr1v 28354 nfrgr2v 28355 frgr3v 28358 3vfriswmgr 28361 n4cyclfrgr 28374 eulplig 28566 riesz4 30145 cnlnadjeu 30159 poimirlem25 35539 poimirlem26 35540 hdmap1eulem 39573 hdmap1eulemOLDN 39574 hdmap14lem6 39624 reuf1odnf 44271 euoreqb 44273 joindm3 45936 meetdm3 45938 |
Copyright terms: Public domain | W3C validator |