![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
rmobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
3 | 2 | reubidva 3404 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∃!wreu 3386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-eu 2572 df-reu 3389 |
This theorem is referenced by: reueqd 3430 sbcreu 3898 oawordeu 8611 xpf1o 9205 dfac2b 10200 creur 12287 creui 12288 divalg 16451 divalg2 16453 lubfval 18420 lubeldm 18423 lubval 18426 glbfval 18433 glbeldm 18436 glbval 18439 joineu 18452 meeteu 18466 dfod2 19606 ustuqtop 24276 addsq2reu 27502 addsqn2reu 27503 addsqrexnreu 27504 addsqnreup 27505 2sqreulem1 27508 2sqreunnlem1 27511 usgredg2vtxeuALT 29257 isfrgr 30292 frcond1 30298 frgr1v 30303 nfrgr2v 30304 frgr3v 30307 3vfriswmgr 30310 n4cyclfrgr 30323 eulplig 30517 riesz4 32096 cnlnadjeu 32110 poimirlem25 37605 poimirlem26 37606 hdmap1eulem 41779 hdmap1eulemOLDN 41780 hdmap14lem6 41830 reuf1odnf 47022 euoreqb 47024 isuspgrim0 47756 isuspgrimlem 47758 joindm3 48649 meetdm3 48651 |
Copyright terms: Public domain | W3C validator |