![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
rmobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
3 | 2 | reubidva 3393 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2105 ∃!wreu 3375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-mo 2537 df-eu 2566 df-reu 3378 |
This theorem is referenced by: reueqd 3418 sbcreu 3884 oawordeu 8591 xpf1o 9177 dfac2b 10168 creur 12257 creui 12258 divalg 16436 divalg2 16438 lubfval 18407 lubeldm 18410 lubval 18413 glbfval 18420 glbeldm 18423 glbval 18426 joineu 18439 meeteu 18453 dfod2 19596 ustuqtop 24270 addsq2reu 27498 addsqn2reu 27499 addsqrexnreu 27500 addsqnreup 27501 2sqreulem1 27504 2sqreunnlem1 27507 usgredg2vtxeuALT 29253 isfrgr 30288 frcond1 30294 frgr1v 30299 nfrgr2v 30300 frgr3v 30303 3vfriswmgr 30306 n4cyclfrgr 30319 eulplig 30513 riesz4 32092 cnlnadjeu 32106 poimirlem25 37631 poimirlem26 37632 hdmap1eulem 41804 hdmap1eulemOLDN 41805 hdmap14lem6 41855 reuf1odnf 47056 euoreqb 47058 isuspgrim0 47809 isuspgrimlem 47811 joindm3 48765 meetdm3 48767 upciclem1 48811 |
Copyright terms: Public domain | W3C validator |