| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rmobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | reubidva 3370 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∃!wreu 3352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-reu 3355 |
| This theorem is referenced by: reueqd 3392 sbcreu 3839 oawordeu 8519 xpf1o 9103 dfac2b 10084 creur 12180 creui 12181 divalg 16373 divalg2 16375 lubfval 18309 lubeldm 18312 lubval 18315 glbfval 18322 glbeldm 18325 glbval 18328 joineu 18341 meeteu 18355 dfod2 19494 ustuqtop 24134 addsq2reu 27351 addsqn2reu 27352 addsqrexnreu 27353 addsqnreup 27354 2sqreulem1 27357 2sqreunnlem1 27360 usgredg2vtxeuALT 29149 isfrgr 30189 frcond1 30195 frgr1v 30200 nfrgr2v 30201 frgr3v 30204 3vfriswmgr 30207 n4cyclfrgr 30220 eulplig 30414 riesz4 31993 cnlnadjeu 32007 poimirlem25 37639 poimirlem26 37640 hdmap1eulem 41816 hdmap1eulemOLDN 41817 hdmap14lem6 41867 reuf1odnf 47108 euoreqb 47110 isuspgrim0 47894 isuspgrimlem 47895 joindm3 48957 meetdm3 48959 upciclem1 49155 upfval2 49166 upfval3 49167 isuplem 49168 oppcup3lem 49195 isinito2lem 49487 |
| Copyright terms: Public domain | W3C validator |