| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rmobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | reubidva 3361 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 ∃!wreu 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2537 df-eu 2566 df-reu 3348 |
| This theorem is referenced by: reueqd 3383 sbcreu 3823 oawordeu 8476 xpf1o 9059 dfac2b 10029 creur 12126 creui 12127 divalg 16316 divalg2 16318 lubfval 18256 lubeldm 18259 lubval 18262 glbfval 18269 glbeldm 18272 glbval 18275 joineu 18288 meeteu 18302 dfod2 19478 ustuqtop 24162 addsq2reu 27379 addsqn2reu 27380 addsqrexnreu 27381 addsqnreup 27382 2sqreulem1 27385 2sqreunnlem1 27388 usgredg2vtxeuALT 29202 isfrgr 30242 frcond1 30248 frgr1v 30253 nfrgr2v 30254 frgr3v 30257 3vfriswmgr 30260 n4cyclfrgr 30273 eulplig 30467 riesz4 32046 cnlnadjeu 32060 poimirlem25 37705 poimirlem26 37706 hdmap1eulem 41941 hdmap1eulemOLDN 41942 hdmap14lem6 41992 reuf1odnf 47231 euoreqb 47233 isuspgrim0 48018 isuspgrimlem 48019 joindm3 49093 meetdm3 49095 upciclem1 49291 upfval2 49302 upfval3 49303 isuplem 49304 oppcup3lem 49331 isinito2lem 49623 |
| Copyright terms: Public domain | W3C validator |