| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rmobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | reubidva 3361 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∃!wreu 3343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-reu 3346 |
| This theorem is referenced by: reueqd 3383 sbcreu 3830 oawordeu 8480 xpf1o 9063 dfac2b 10044 creur 12140 creui 12141 divalg 16332 divalg2 16334 lubfval 18272 lubeldm 18275 lubval 18278 glbfval 18285 glbeldm 18288 glbval 18291 joineu 18304 meeteu 18318 dfod2 19461 ustuqtop 24150 addsq2reu 27367 addsqn2reu 27368 addsqrexnreu 27369 addsqnreup 27370 2sqreulem1 27373 2sqreunnlem1 27376 usgredg2vtxeuALT 29185 isfrgr 30222 frcond1 30228 frgr1v 30233 nfrgr2v 30234 frgr3v 30237 3vfriswmgr 30240 n4cyclfrgr 30253 eulplig 30447 riesz4 32026 cnlnadjeu 32040 poimirlem25 37624 poimirlem26 37625 hdmap1eulem 41801 hdmap1eulemOLDN 41802 hdmap14lem6 41852 reuf1odnf 47092 euoreqb 47094 isuspgrim0 47878 isuspgrimlem 47879 joindm3 48941 meetdm3 48943 upciclem1 49139 upfval2 49150 upfval3 49151 isuplem 49152 oppcup3lem 49179 isinito2lem 49471 |
| Copyright terms: Public domain | W3C validator |