MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reubidv Structured version   Visualization version   GIF version

Theorem reubidv 3395
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
Hypothesis
Ref Expression
rmobidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
reubidv (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reubidv
StepHypRef Expression
1 rmobidv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 482 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32reubidva 3393 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107  ∃!wreu 3375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-mo 2535  df-eu 2564  df-reu 3378
This theorem is referenced by:  reueqd  3420  sbcreu  3871  oawordeu  8555  xpf1o  9139  dfac2b  10125  creur  12206  creui  12207  divalg  16346  divalg2  16348  lubfval  18303  lubeldm  18306  lubval  18309  glbfval  18316  glbeldm  18319  glbval  18322  joineu  18335  meeteu  18349  dfod2  19432  ustuqtop  23751  addsq2reu  26943  addsqn2reu  26944  addsqrexnreu  26945  addsqnreup  26946  2sqreulem1  26949  2sqreunnlem1  26952  usgredg2vtxeuALT  28479  isfrgr  29513  frcond1  29519  frgr1v  29524  nfrgr2v  29525  frgr3v  29528  3vfriswmgr  29531  n4cyclfrgr  29544  eulplig  29738  riesz4  31317  cnlnadjeu  31331  poimirlem25  36513  poimirlem26  36514  hdmap1eulem  40693  hdmap1eulemOLDN  40694  hdmap14lem6  40744  reuf1odnf  45815  euoreqb  45817  joindm3  47602  meetdm3  47604
  Copyright terms: Public domain W3C validator