| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| rmobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 3 | 2 | reubidva 3372 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∃!wreu 3354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 df-eu 2563 df-reu 3357 |
| This theorem is referenced by: reueqd 3395 sbcreu 3842 oawordeu 8522 xpf1o 9109 dfac2b 10091 creur 12187 creui 12188 divalg 16380 divalg2 16382 lubfval 18316 lubeldm 18319 lubval 18322 glbfval 18329 glbeldm 18332 glbval 18335 joineu 18348 meeteu 18362 dfod2 19501 ustuqtop 24141 addsq2reu 27358 addsqn2reu 27359 addsqrexnreu 27360 addsqnreup 27361 2sqreulem1 27364 2sqreunnlem1 27367 usgredg2vtxeuALT 29156 isfrgr 30196 frcond1 30202 frgr1v 30207 nfrgr2v 30208 frgr3v 30211 3vfriswmgr 30214 n4cyclfrgr 30227 eulplig 30421 riesz4 32000 cnlnadjeu 32014 poimirlem25 37646 poimirlem26 37647 hdmap1eulem 41823 hdmap1eulemOLDN 41824 hdmap14lem6 41874 reuf1odnf 47112 euoreqb 47114 isuspgrim0 47898 isuspgrimlem 47899 joindm3 48961 meetdm3 48963 upciclem1 49159 upfval2 49170 upfval3 49171 isuplem 49172 oppcup3lem 49199 isinito2lem 49491 |
| Copyright terms: Public domain | W3C validator |