MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reubidv Structured version   Visualization version   GIF version

Theorem reubidv 3406
Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
Hypothesis
Ref Expression
rmobidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
reubidv (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reubidv
StepHypRef Expression
1 rmobidv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 480 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32reubidva 3404 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  ∃!wreu 3386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-eu 2572  df-reu 3389
This theorem is referenced by:  reueqd  3430  sbcreu  3898  oawordeu  8611  xpf1o  9205  dfac2b  10200  creur  12287  creui  12288  divalg  16451  divalg2  16453  lubfval  18420  lubeldm  18423  lubval  18426  glbfval  18433  glbeldm  18436  glbval  18439  joineu  18452  meeteu  18466  dfod2  19606  ustuqtop  24276  addsq2reu  27502  addsqn2reu  27503  addsqrexnreu  27504  addsqnreup  27505  2sqreulem1  27508  2sqreunnlem1  27511  usgredg2vtxeuALT  29257  isfrgr  30292  frcond1  30298  frgr1v  30303  nfrgr2v  30304  frgr3v  30307  3vfriswmgr  30310  n4cyclfrgr  30323  eulplig  30517  riesz4  32096  cnlnadjeu  32110  poimirlem25  37605  poimirlem26  37606  hdmap1eulem  41779  hdmap1eulemOLDN  41780  hdmap14lem6  41830  reuf1odnf  47022  euoreqb  47024  isuspgrim0  47756  isuspgrimlem  47758  joindm3  48649  meetdm3  48651
  Copyright terms: Public domain W3C validator