MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoeq1f Structured version   Visualization version   GIF version

Theorem rmoeq1f 3398
Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypotheses
Ref Expression
rmoeq1f.1 𝑥𝐴
rmoeq1f.2 𝑥𝐵
Assertion
Ref Expression
rmoeq1f (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))

Proof of Theorem rmoeq1f
StepHypRef Expression
1 rmoeq1f.1 . . . 4 𝑥𝐴
2 rmoeq1f.2 . . . 4 𝑥𝐵
31, 2nfeq 2906 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2818 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 631 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5mobid 2544 . 2 (𝐴 = 𝐵 → (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑥(𝑥𝐵𝜑)))
7 df-rmo 3356 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
8 df-rmo 3356 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2532  wnfc 2877  ∃*wrmo 3355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-mo 2534  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rmo 3356
This theorem is referenced by:  reueq1f  3399
  Copyright terms: Public domain W3C validator