MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoeq1f Structured version   Visualization version   GIF version

Theorem rmoeq1f 3431
Description: Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypotheses
Ref Expression
rmoeq1f.1 𝑥𝐴
rmoeq1f.2 𝑥𝐵
Assertion
Ref Expression
rmoeq1f (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))

Proof of Theorem rmoeq1f
StepHypRef Expression
1 rmoeq1f.1 . . . 4 𝑥𝐴
2 rmoeq1f.2 . . . 4 𝑥𝐵
31, 2nfeq 2922 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2833 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 630 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5mobid 2553 . 2 (𝐴 = 𝐵 → (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑥(𝑥𝐵𝜑)))
7 df-rmo 3388 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
8 df-rmo 3388 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ∃*wmo 2541  wnfc 2893  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rmo 3388
This theorem is referenced by:  reueq1f  3432
  Copyright terms: Public domain W3C validator