MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueqdv Structured version   Visualization version   GIF version

Theorem reueqdv 3405
Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
reueqdv.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
reueqdv (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reueqdv
StepHypRef Expression
1 reueqdv.1 . 2 (𝜑𝐴 = 𝐵)
2 reueq1 3400 . 2 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐵 𝜓))
31, 2syl 17 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  ∃!wreu 3361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-mo 2538  df-eu 2567  df-cleq 2726  df-rex 3060  df-rmo 3363  df-reu 3364
This theorem is referenced by:  upciclem1  48950
  Copyright terms: Public domain W3C validator