MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueqbidv Structured version   Visualization version   GIF version

Theorem reueqbidv 3400
Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reubidv 3375. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
reueqbidv.1 (𝜑𝐴 = 𝐵)
reueqbidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
reueqbidv (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem reueqbidv
StepHypRef Expression
1 reueqbidv.1 . . . . 5 (𝜑𝐴 = 𝐵)
21eleq2d 2819 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
3 reueqbidv.2 . . . 4 (𝜑 → (𝜓𝜒))
42, 3anbi12d 632 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
54eubidv 2584 . 2 (𝜑 → (∃!𝑥(𝑥𝐴𝜓) ↔ ∃!𝑥(𝑥𝐵𝜒)))
6 df-reu 3358 . 2 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥(𝑥𝐴𝜓))
7 df-reu 3358 . 2 (∃!𝑥𝐵 𝜒 ↔ ∃!𝑥(𝑥𝐵𝜒))
85, 6, 73bitr4g 314 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  ∃!weu 2566  ∃!wreu 3355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-mo 2538  df-eu 2567  df-cleq 2726  df-clel 2808  df-reu 3358
This theorem is referenced by:  upfval  48932  isuplem  48935  upeu3  48949  oppcup  48951
  Copyright terms: Public domain W3C validator