![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reueqbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reubidv 3406. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
reueqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
reueqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reueqbidv | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reueqbidv.1 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2830 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | reueqbidv.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
5 | 4 | eubidv 2589 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
6 | df-reu 3389 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
7 | df-reu 3389 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 ∃!wreu 3386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-eu 2572 df-cleq 2732 df-clel 2819 df-reu 3389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |