| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reueqbidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reueqbidv 3397. (Contributed by Zhi Wang, 20-Nov-2025.) |
| Ref | Expression |
|---|---|
| reueqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| reueqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reueqbidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reueqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | reubidva 3372 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| 3 | reueqbidva.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | reueqdv 3396 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 df-eu 2563 df-cleq 2722 df-rex 3055 df-rmo 3356 df-reu 3357 |
| This theorem is referenced by: uppropd 49154 |
| Copyright terms: Public domain | W3C validator |