Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reueqbidva Structured version   Visualization version   GIF version

Theorem reueqbidva 48837
Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reueqbidv 3384. (Contributed by Zhi Wang, 20-Nov-2025.)
Hypotheses
Ref Expression
reueqbidva.1 (𝜑𝐴 = 𝐵)
reueqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
reueqbidva (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐵 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem reueqbidva
StepHypRef Expression
1 reueqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21reubidva 3360 . 2 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
3 reueqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43reueqdv 3383 . 2 (𝜑 → (∃!𝑥𝐴 𝜒 ↔ ∃!𝑥𝐵 𝜒))
52, 4bitrd 279 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ∃!wreu 3344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-eu 2564  df-cleq 2723  df-rex 3057  df-rmo 3346  df-reu 3347
This theorem is referenced by:  uppropd  49213
  Copyright terms: Public domain W3C validator