MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbiOLD Structured version   Visualization version   GIF version

Theorem rexbiOLD 3170
Description: Obsolete version of rexbi 3169 as of 31-Oct-2024. (Contributed by Scott Fenton, 7-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rexbiOLD (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓))

Proof of Theorem rexbiOLD
StepHypRef Expression
1 ralbi 3092 . . 3 (∀𝑥𝐴𝜑 ↔ ¬ 𝜓) → (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑥𝐴 ¬ 𝜓))
21notbid 317 . 2 (∀𝑥𝐴𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜓))
3 notbi 318 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
43ralbii 3090 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜑 ↔ ¬ 𝜓))
5 dfrex2 3166 . . 3 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
6 dfrex2 3166 . . 3 (∃𝑥𝐴 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜓)
75, 6bibi12i 339 . 2 ((∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓) ↔ (¬ ∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜓))
82, 4, 73imtr4i 291 1 (∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator