Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexbiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rexbi 3169 as of 31-Oct-2024. (Contributed by Scott Fenton, 7-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rexbiOLD | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbi 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 ↔ ¬ 𝜓) → (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | |
2 | 1 | notbid 317 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
3 | notbi 318 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
4 | 3 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜑 ↔ ¬ 𝜓)) |
5 | dfrex2 3166 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
6 | dfrex2 3166 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) | |
7 | 5, 6 | bibi12i 339 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
8 | 2, 4, 7 | 3imtr4i 291 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |