| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbiOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rexbi 3104 as of 31-Oct-2024. (Contributed by Scott Fenton, 7-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rexbiOLD | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbi 3103 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 ↔ ¬ 𝜓) → (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | |
| 2 | 1 | notbid 318 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
| 3 | notbi 319 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 4 | 3 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (¬ 𝜑 ↔ ¬ 𝜓)) |
| 5 | dfrex2 3073 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 6 | dfrex2 3073 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) | |
| 7 | 5, 6 | bibi12i 339 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) ↔ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
| 8 | 2, 4, 7 | 3imtr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3061 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |