| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbi | Structured version Visualization version GIF version | ||
| Description: Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
| Ref | Expression |
|---|---|
| rexbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp 215 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | ralimi 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 3 | rexim 3086 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| 5 | biimpr 220 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 6 | 5 | ralimi 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) |
| 7 | rexim 3086 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜑)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜑)) |
| 9 | 4, 8 | impbid 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3060 ∃wrex 3069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3061 df-rex 3070 |
| This theorem is referenced by: ralrexbid 3105 |
| Copyright terms: Public domain | W3C validator |