![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
Ref | Expression |
---|---|
dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3201 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 1 | con2bii 349 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∀wral 3117 ∃wrex 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 df-ral 3122 df-rex 3123 |
This theorem is referenced by: rexanali 3206 nfrexd 3214 rexim 3216 r19.23v 3232 r19.30 3292 r19.35 3294 cbvrexf 3378 rspcimedv 3528 sbcrext 3736 cbvrexcsf 3790 rabn0 4187 r19.9rzv 4287 rexxfrd 5109 rexxfr2d 5111 rexxfrd2 5113 rexxfr 5116 rexiunxp 5495 rexxpf 5502 rexrnmpt 6618 cbvexfo 6800 rexrnmpt2 7036 tz7.49 7806 dfsup2 8619 supnub 8637 infnlb 8667 wofib 8719 zfregs2 8886 alephval3 9246 ac6n 9622 prmreclem5 15995 sylow1lem3 18366 ordtrest2lem 21378 trfil2 22061 alexsubALTlem3 22223 alexsubALTlem4 22224 evth 23128 lhop1lem 24175 vdn0conngrumgrv2 27561 nmobndseqi 28178 chpssati 29766 chrelat3 29774 nn0min 30103 xrnarchi 30272 ordtrest2NEWlem 30502 dffr5 32174 nosupbnd1lem4 32385 poimirlem1 33947 poimirlem26 33972 poimirlem27 33973 fdc 34076 lpssat 35081 lssat 35084 lfl1 35138 atlrelat1 35389 unxpwdom3 38501 ss2iundf 38785 zfregs2VD 39888 |
Copyright terms: Public domain | W3C validator |