![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
Ref | Expression |
---|---|
dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-ral 3060 df-rex 3069 |
This theorem is referenced by: rexanali 3100 rexbiOLD 3103 r19.23v 3181 nfrexdw 3308 cbvrexf 3359 nfrexd 3371 rspcimedv 3613 rexab 3703 sbcrext 3882 cbvrexcsf 3954 rabn0 4395 r19.9rzv 4506 rexn0 4517 rexsng 4681 rexxfrd 5415 rexxfr2d 5417 rexxfrd2 5419 rexxfr 5422 rexiunxp 5854 rexxpf 5861 rexrnmptw 7115 rexrnmpt 7117 rexima 7258 cbvexfo 7310 rexrnmpo 7573 tz7.49 8484 dfsup2 9482 supnub 9500 infnlb 9530 wofib 9583 zfregs2 9771 alephval3 10148 ac6n 10523 prmreclem5 16954 sylow1lem3 19633 ordtrest2lem 23227 trfil2 23911 alexsubALTlem3 24073 alexsubALTlem4 24074 evth 25005 lhop1lem 26067 nosupbnd1lem4 27771 vdn0conngrumgrv2 30225 nmobndseqi 30808 chpssati 32392 chrelat3 32400 nn0min 32827 xrnarchi 33174 0nellinds 33378 ordtrest2NEWlem 33883 dffr5 35734 poimirlem1 37608 poimirlem26 37633 poimirlem27 37634 fdc 37732 lpssat 38995 lssat 38998 lfl1 39052 atlrelat1 39303 unxpwdom3 43084 onsupeqnmax 43236 sucomisnotcard 43534 ss2iundf 43649 zfregs2VD 44839 |
Copyright terms: Public domain | W3C validator |