Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
Ref | Expression |
---|---|
dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3163 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rexim 3168 rexbiOLD 3170 rexanali 3191 r19.23v 3207 nfrexd 3235 nfrexdg 3236 cbvrexfw 3360 cbvrexf 3362 rspcimedv 3542 rexab 3624 sbcrext 3802 cbvrexcsf 3874 rabn0 4316 r19.9rzv 4427 rexn0 4438 rexsng 4607 rexxfrd 5327 rexxfr2d 5329 rexxfrd2 5331 rexxfr 5334 rexiunxp 5738 rexxpf 5745 rexrnmptw 6953 rexrnmpt 6955 cbvexfo 7142 rexrnmpo 7391 tz7.49 8246 dfsup2 9133 supnub 9151 infnlb 9181 wofib 9234 zfregs2 9422 alephval3 9797 ac6n 10172 prmreclem5 16549 sylow1lem3 19120 ordtrest2lem 22262 trfil2 22946 alexsubALTlem3 23108 alexsubALTlem4 23109 evth 24028 lhop1lem 25082 vdn0conngrumgrv2 28461 nmobndseqi 29042 chpssati 30626 chrelat3 30634 nn0min 31036 xrnarchi 31340 0nellinds 31468 ordtrest2NEWlem 31774 dffr5 33627 nosupbnd1lem4 33841 poimirlem1 35705 poimirlem26 35730 poimirlem27 35731 fdc 35830 lpssat 36954 lssat 36957 lfl1 37011 atlrelat1 37262 unxpwdom3 40836 ss2iundf 41156 zfregs2VD 42350 |
Copyright terms: Public domain | W3C validator |