| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rexanali 3084 r19.23v 3161 nfrexdw 3284 cbvrexf 3335 nfrexd 3347 rspcimedv 3579 rexab 3666 sbcrext 3836 cbvrexcsf 3905 rabn0 4352 r19.9rzv 4463 rexn0 4474 rexsng 4640 rexxfrd 5364 rexxfr2d 5366 rexxfrd2 5368 rexxfr 5371 rexiunxp 5804 rexxpf 5811 rexrnmptw 7067 rexrnmpt 7069 rexima 7212 cbvexfo 7265 rexrnmpo 7529 tz7.49 8413 dfsup2 9395 supnub 9413 infnlb 9444 wofib 9498 zfregs2 9686 alephval3 10063 ac6n 10438 prmreclem5 16891 sylow1lem3 19530 ordtrest2lem 23090 trfil2 23774 alexsubALTlem3 23936 alexsubALTlem4 23937 evth 24858 lhop1lem 25918 nosupbnd1lem4 27623 vdn0conngrumgrv2 30125 nmobndseqi 30708 chpssati 32292 chrelat3 32300 nn0min 32745 xrnarchi 33138 0nellinds 33341 ordtrest2NEWlem 33912 dffr5 35741 poimirlem1 37615 poimirlem26 37640 poimirlem27 37641 fdc 37739 lpssat 39006 lssat 39009 lfl1 39063 atlrelat1 39314 unxpwdom3 43084 onsupeqnmax 43236 sucomisnotcard 43533 ss2iundf 43648 zfregs2VD 44830 rext0 44928 |
| Copyright terms: Public domain | W3C validator |