![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
Ref | Expression |
---|---|
dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3073 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 1 | con2bii 358 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3062 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-ral 3063 df-rex 3072 |
This theorem is referenced by: rexanali 3103 rexbiOLD 3106 r19.23v 3183 nfrexdw 3308 cbvrexf 3358 nfrexd 3370 rspcimedv 3604 rexab 3691 sbcrext 3868 cbvrexcsf 3940 rabn0 4386 r19.9rzv 4500 rexn0 4511 rexsng 4679 rexxfrd 5408 rexxfr2d 5410 rexxfrd2 5412 rexxfr 5415 rexiunxp 5841 rexxpf 5848 rexrnmptw 7097 rexrnmpt 7099 cbvexfo 7288 rexrnmpo 7548 tz7.49 8445 dfsup2 9439 supnub 9457 infnlb 9487 wofib 9540 zfregs2 9728 alephval3 10105 ac6n 10480 prmreclem5 16853 sylow1lem3 19468 ordtrest2lem 22707 trfil2 23391 alexsubALTlem3 23553 alexsubALTlem4 23554 evth 24475 lhop1lem 25530 nosupbnd1lem4 27214 vdn0conngrumgrv2 29449 nmobndseqi 30032 chpssati 31616 chrelat3 31624 nn0min 32026 xrnarchi 32330 0nellinds 32483 ordtrest2NEWlem 32902 dffr5 34724 poimirlem1 36489 poimirlem26 36514 poimirlem27 36515 fdc 36613 lpssat 37883 lssat 37886 lfl1 37940 atlrelat1 38191 unxpwdom3 41837 onsupeqnmax 41996 sucomisnotcard 42295 ss2iundf 42410 zfregs2VD 43602 |
Copyright terms: Public domain | W3C validator |