| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rexanali 3083 r19.23v 3156 nfrexdw 3276 cbvrexf 3326 nfrexd 3338 rspcimedv 3570 rexab 3657 sbcrext 3827 cbvrexcsf 3896 rabn0 4342 r19.9rzv 4453 rexn0 4464 rexsng 4630 rexxfrd 5351 rexxfr2d 5353 rexxfrd2 5355 rexxfr 5358 rexiunxp 5787 rexxpf 5794 rexrnmptw 7033 rexrnmpt 7035 rexima 7178 cbvexfo 7231 rexrnmpo 7493 tz7.49 8374 dfsup2 9353 supnub 9371 infnlb 9402 wofib 9456 zfregs2 9648 alephval3 10023 ac6n 10398 prmreclem5 16850 sylow1lem3 19497 ordtrest2lem 23106 trfil2 23790 alexsubALTlem3 23952 alexsubALTlem4 23953 evth 24874 lhop1lem 25934 nosupbnd1lem4 27639 vdn0conngrumgrv2 30158 nmobndseqi 30741 chpssati 32325 chrelat3 32333 nn0min 32778 xrnarchi 33136 0nellinds 33317 ordtrest2NEWlem 33888 dffr5 35726 poimirlem1 37600 poimirlem26 37625 poimirlem27 37626 fdc 37724 lpssat 38991 lssat 38994 lfl1 39048 atlrelat1 39299 unxpwdom3 43068 onsupeqnmax 43220 sucomisnotcard 43517 ss2iundf 43632 zfregs2VD 44814 rext0 44912 |
| Copyright terms: Public domain | W3C validator |