![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
Ref | Expression |
---|---|
dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 1 | con2bii 356 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-ral 3060 df-rex 3069 |
This theorem is referenced by: rexanali 3100 rexbiOLD 3103 r19.23v 3180 nfrexdw 3305 cbvrexf 3355 nfrexd 3367 rspcimedv 3604 rexab 3691 sbcrext 3868 cbvrexcsf 3940 rabn0 4386 r19.9rzv 4500 rexn0 4511 rexsng 4679 rexxfrd 5408 rexxfr2d 5410 rexxfrd2 5412 rexxfr 5415 rexiunxp 5841 rexxpf 5848 rexrnmptw 7097 rexrnmpt 7099 cbvexfo 7292 rexrnmpo 7552 tz7.49 8449 dfsup2 9443 supnub 9461 infnlb 9491 wofib 9544 zfregs2 9732 alephval3 10109 ac6n 10484 prmreclem5 16859 sylow1lem3 19511 ordtrest2lem 22929 trfil2 23613 alexsubALTlem3 23775 alexsubALTlem4 23776 evth 24707 lhop1lem 25764 nosupbnd1lem4 27448 vdn0conngrumgrv2 29714 nmobndseqi 30297 chpssati 31881 chrelat3 31889 nn0min 32291 xrnarchi 32598 0nellinds 32755 ordtrest2NEWlem 33198 dffr5 35026 poimirlem1 36794 poimirlem26 36819 poimirlem27 36820 fdc 36918 lpssat 38188 lssat 38191 lfl1 38245 atlrelat1 38496 unxpwdom3 42141 onsupeqnmax 42300 sucomisnotcard 42599 ss2iundf 42714 zfregs2VD 43906 |
Copyright terms: Public domain | W3C validator |