![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
Ref | Expression |
---|---|
dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: rexanali 3108 rexbiOLD 3111 r19.23v 3189 nfrexdw 3316 cbvrexf 3369 nfrexd 3381 rspcimedv 3626 rexab 3716 sbcrext 3895 cbvrexcsf 3967 rabn0 4412 r19.9rzv 4523 rexn0 4534 rexsng 4698 rexxfrd 5427 rexxfr2d 5429 rexxfrd2 5431 rexxfr 5434 rexiunxp 5865 rexxpf 5872 rexrnmptw 7129 rexrnmpt 7131 rexima 7275 cbvexfo 7326 rexrnmpo 7590 tz7.49 8501 dfsup2 9513 supnub 9531 infnlb 9561 wofib 9614 zfregs2 9802 alephval3 10179 ac6n 10554 prmreclem5 16967 sylow1lem3 19642 ordtrest2lem 23232 trfil2 23916 alexsubALTlem3 24078 alexsubALTlem4 24079 evth 25010 lhop1lem 26072 nosupbnd1lem4 27774 vdn0conngrumgrv2 30228 nmobndseqi 30811 chpssati 32395 chrelat3 32403 nn0min 32824 xrnarchi 33164 0nellinds 33363 ordtrest2NEWlem 33868 dffr5 35716 poimirlem1 37581 poimirlem26 37606 poimirlem27 37607 fdc 37705 lpssat 38969 lssat 38972 lfl1 39026 atlrelat1 39277 unxpwdom3 43052 onsupeqnmax 43208 sucomisnotcard 43506 ss2iundf 43621 zfregs2VD 44812 |
Copyright terms: Public domain | W3C validator |