| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 3071 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3060 ∃wrex 3069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3061 df-rex 3070 |
| This theorem is referenced by: rexanali 3101 rexbiOLD 3104 r19.23v 3182 nfrexdw 3309 cbvrexf 3360 nfrexd 3372 rspcimedv 3612 rexab 3699 sbcrext 3872 cbvrexcsf 3941 rabn0 4388 r19.9rzv 4499 rexn0 4510 rexsng 4675 rexxfrd 5408 rexxfr2d 5410 rexxfrd2 5412 rexxfr 5415 rexiunxp 5850 rexxpf 5857 rexrnmptw 7114 rexrnmpt 7116 rexima 7259 cbvexfo 7311 rexrnmpo 7574 tz7.49 8486 dfsup2 9485 supnub 9503 infnlb 9533 wofib 9586 zfregs2 9774 alephval3 10151 ac6n 10526 prmreclem5 16959 sylow1lem3 19619 ordtrest2lem 23212 trfil2 23896 alexsubALTlem3 24058 alexsubALTlem4 24059 evth 24992 lhop1lem 26053 nosupbnd1lem4 27757 vdn0conngrumgrv2 30216 nmobndseqi 30799 chpssati 32383 chrelat3 32391 nn0min 32823 xrnarchi 33192 0nellinds 33399 ordtrest2NEWlem 33922 dffr5 35755 poimirlem1 37629 poimirlem26 37654 poimirlem27 37655 fdc 37753 lpssat 39015 lssat 39018 lfl1 39072 atlrelat1 39323 unxpwdom3 43112 onsupeqnmax 43264 sucomisnotcard 43562 ss2iundf 43677 zfregs2VD 44866 rext0 44964 |
| Copyright terms: Public domain | W3C validator |