| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 3058 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: rexanali 3086 r19.23v 3159 nfrexdw 3278 cbvrexf 3327 nfrexd 3339 rspcimedv 3568 rexab 3654 sbcrext 3824 cbvrexcsf 3893 rabn0 4339 r19.9rzv 4450 rexn0 4461 rexsng 4629 rexxfrd 5347 rexxfr2d 5349 rexxfrd2 5351 rexxfr 5354 rexiunxp 5780 rexxpf 5787 rexrnmptw 7028 rexrnmpt 7030 rexima 7172 cbvexfo 7224 rexrnmpo 7486 tz7.49 8364 dfsup2 9328 supnub 9346 infnlb 9377 wofib 9431 zfregs2 9623 alephval3 9998 ac6n 10373 prmreclem5 16829 sylow1lem3 19510 ordtrest2lem 23116 trfil2 23800 alexsubALTlem3 23962 alexsubALTlem4 23963 evth 24883 lhop1lem 25943 nosupbnd1lem4 27648 vdn0conngrumgrv2 30171 nmobndseqi 30754 chpssati 32338 chrelat3 32346 nn0min 32798 xrnarchi 33148 0nellinds 33330 ordtrest2NEWlem 33930 dffr5 35786 poimirlem1 37660 poimirlem26 37685 poimirlem27 37686 fdc 37784 lpssat 39051 lssat 39054 lfl1 39108 atlrelat1 39359 unxpwdom3 43127 onsupeqnmax 43279 sucomisnotcard 43576 ss2iundf 43691 zfregs2VD 44872 rext0 44970 |
| Copyright terms: Public domain | W3C validator |