| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 3059 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3048 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3049 df-rex 3058 |
| This theorem is referenced by: rexanali 3087 r19.23v 3160 nfrexdw 3279 cbvrexf 3328 nfrexd 3340 rspcimedv 3564 rexab 3650 sbcrext 3820 cbvrexcsf 3889 rabn0 4338 r19.9rzv 4449 rexn0 4460 rexsng 4628 rexxfrd 5349 rexxfr2d 5351 rexxfrd2 5353 rexxfr 5356 rexiunxp 5784 rexxpf 5791 rexrnmptw 7034 rexrnmpt 7036 rexima 7178 cbvexfo 7230 rexrnmpo 7492 tz7.49 8370 dfsup2 9335 supnub 9353 infnlb 9384 wofib 9438 zfregs2 9630 alephval3 10008 ac6n 10383 prmreclem5 16834 sylow1lem3 19514 ordtrest2lem 23119 trfil2 23803 alexsubALTlem3 23965 alexsubALTlem4 23966 evth 24886 lhop1lem 25946 nosupbnd1lem4 27651 vdn0conngrumgrv2 30178 nmobndseqi 30761 chpssati 32345 chrelat3 32353 nn0min 32808 xrnarchi 33160 0nellinds 33342 ordtrest2NEWlem 33956 dffr5 35819 poimirlem1 37681 poimirlem26 37706 poimirlem27 37707 fdc 37805 lpssat 39132 lssat 39135 lfl1 39189 atlrelat1 39440 unxpwdom3 43212 onsupeqnmax 43364 sucomisnotcard 43661 ss2iundf 43776 zfregs2VD 44957 rext0 45055 |
| Copyright terms: Public domain | W3C validator |