| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | 1 | con2bii 357 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: rexanali 3092 r19.23v 3169 nfrexdw 3294 cbvrexf 3345 nfrexd 3357 rspcimedv 3597 rexab 3683 sbcrext 3853 cbvrexcsf 3922 rabn0 4369 r19.9rzv 4480 rexn0 4491 rexsng 4657 rexxfrd 5384 rexxfr2d 5386 rexxfrd2 5388 rexxfr 5391 rexiunxp 5825 rexxpf 5832 rexrnmptw 7090 rexrnmpt 7092 rexima 7235 cbvexfo 7288 rexrnmpo 7552 tz7.49 8464 dfsup2 9461 supnub 9479 infnlb 9510 wofib 9564 zfregs2 9752 alephval3 10129 ac6n 10504 prmreclem5 16945 sylow1lem3 19586 ordtrest2lem 23146 trfil2 23830 alexsubALTlem3 23992 alexsubALTlem4 23993 evth 24914 lhop1lem 25975 nosupbnd1lem4 27680 vdn0conngrumgrv2 30182 nmobndseqi 30765 chpssati 32349 chrelat3 32357 nn0min 32804 xrnarchi 33187 0nellinds 33390 ordtrest2NEWlem 33958 dffr5 35776 poimirlem1 37650 poimirlem26 37675 poimirlem27 37676 fdc 37774 lpssat 39036 lssat 39039 lfl1 39093 atlrelat1 39344 unxpwdom3 43086 onsupeqnmax 43238 sucomisnotcard 43535 ss2iundf 43650 zfregs2VD 44832 rext0 44930 |
| Copyright terms: Public domain | W3C validator |