MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbida Structured version   Visualization version   GIF version

Theorem rexbida 3195
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
rexbida.1 𝑥𝜑
rexbida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexbida (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

Proof of Theorem rexbida
StepHypRef Expression
1 rexbida.1 . . 3 𝑥𝜑
2 rexbida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32pm5.32da 568 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
41, 3exbid 2247 . 2 (𝜑 → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐴𝜒)))
5 df-rex 3067 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
6 df-rex 3067 . 2 (∃𝑥𝐴 𝜒 ↔ ∃𝑥(𝑥𝐴𝜒))
74, 5, 63bitr4g 303 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wex 1852  wnf 1856  wcel 2145  wrex 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203
This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853  df-nf 1858  df-rex 3067
This theorem is referenced by:  rexbidvaALT  3198  rexbid  3199  dfiun2g  4687  fun11iun  7276  iuneq12daf  29710  bnj1366  31237  glbconxN  35186  supminfrnmpt  40185  limsupre2mpt  40477  limsupre3mpt  40481  limsupreuzmpt  40486
  Copyright terms: Public domain W3C validator