MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbida Structured version   Visualization version   GIF version

Theorem rexbida 3246
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
rexbida.1 𝑥𝜑
rexbida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexbida (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

Proof of Theorem rexbida
StepHypRef Expression
1 rexbida.1 . . 3 𝑥𝜑
2 rexbida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32pm5.32da 578 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
41, 3exbid 2219 . 2 (𝜑 → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐴𝜒)))
5 df-rex 3069 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
6 df-rex 3069 . 2 (∃𝑥𝐴 𝜒 ↔ ∃𝑥(𝑥𝐴𝜒))
74, 5, 63bitr4g 313 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  wnf 1787  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-rex 3069
This theorem is referenced by:  rexbidvaALT  3247  rexbid  3248  dfiun2g  4957  iuneq12daf  30797  bnj1366  32709  glbconxN  37319  supminfrnmpt  42875  limsupre2mpt  43161  limsupre3mpt  43165  limsupreuzmpt  43170
  Copyright terms: Public domain W3C validator