Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexbida | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) |
Ref | Expression |
---|---|
rexbida.1 | ⊢ Ⅎ𝑥𝜑 |
rexbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbida | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rexbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | pm5.32da 578 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | 1, 3 | exbid 2219 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
5 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
6 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-rex 3069 |
This theorem is referenced by: rexbidvaALT 3247 rexbid 3248 dfiun2g 4957 iuneq12daf 30797 bnj1366 32709 glbconxN 37319 supminfrnmpt 42875 limsupre2mpt 43161 limsupre3mpt 43165 limsupreuzmpt 43170 |
Copyright terms: Public domain | W3C validator |