|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexbida | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) | 
| Ref | Expression | 
|---|---|
| rexbida.1 | ⊢ Ⅎ𝑥𝜑 | 
| rexbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| rexbida | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rexbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | 
| 4 | 1, 3 | exbid 2222 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) | 
| 5 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 6 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2107 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-rex 3070 | 
| This theorem is referenced by: rexbid 3273 rexbidvaALT 3275 dfiun2gOLD 5030 iuneq12daf 32570 bnj1366 34844 glbconxN 39381 supminfrnmpt 45461 limsupre2mpt 45750 limsupre3mpt 45754 limsupreuzmpt 45759 | 
| Copyright terms: Public domain | W3C validator |