![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dropab1 | Structured version Visualization version GIF version |
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dropab1 | ⊢ (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4874 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩) | |
2 | 1 | sps 2174 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩) |
3 | 2 | eqeq2d 2739 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 = ⟨𝑥, 𝑧⟩ ↔ 𝑤 = ⟨𝑦, 𝑧⟩)) |
4 | 3 | anbi1d 630 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))) |
5 | 4 | drex2 2437 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))) |
6 | 5 | drex1 2436 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))) |
7 | 6 | abbidv 2797 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑦∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)}) |
8 | df-opab 5211 | . 2 ⊢ {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)} | |
9 | df-opab 5211 | . 2 ⊢ {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑦∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)} | |
10 | 7, 8, 9 | 3eqtr4g 2793 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1532 = wceq 1534 ∃wex 1774 {cab 2705 ⟨cop 4635 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-13 2367 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5211 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |