Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dropab1 Structured version   Visualization version   GIF version

Theorem dropab1 44443
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dropab1 (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑})

Proof of Theorem dropab1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4840 . . . . . . . 8 (𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
21sps 2186 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
32eqeq2d 2741 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑤 = ⟨𝑥, 𝑧⟩ ↔ 𝑤 = ⟨𝑦, 𝑧⟩))
43anbi1d 631 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
54drex2 2441 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
65drex1 2440 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
76abbidv 2796 . 2 (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)})
8 df-opab 5173 . 2 {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)}
9 df-opab 5173 . 2 {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)}
107, 8, 93eqtr4g 2790 1 (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  {cab 2708  cop 4598  {copab 5172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2371  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator