![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dropab1 | Structured version Visualization version GIF version |
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dropab1 | ⊢ (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4866 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩) | |
2 | 1 | sps 2170 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩) |
3 | 2 | eqeq2d 2735 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 = ⟨𝑥, 𝑧⟩ ↔ 𝑤 = ⟨𝑦, 𝑧⟩)) |
4 | 3 | anbi1d 629 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))) |
5 | 4 | drex2 2433 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))) |
6 | 5 | drex1 2432 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))) |
7 | 6 | abbidv 2793 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑦∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)}) |
8 | df-opab 5202 | . 2 ⊢ {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)} | |
9 | df-opab 5202 | . 2 ⊢ {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑦∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)} | |
10 | 7, 8, 9 | 3eqtr4g 2789 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 = wceq 1533 ∃wex 1773 {cab 2701 ⟨cop 4627 {copab 5201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-13 2363 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-opab 5202 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |