![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dropab1 | Structured version Visualization version GIF version |
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dropab1 | ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑥, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4897 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑧〉 = 〈𝑦, 𝑧〉) | |
2 | 1 | sps 2186 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → 〈𝑥, 𝑧〉 = 〈𝑦, 𝑧〉) |
3 | 2 | eqeq2d 2751 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 = 〈𝑥, 𝑧〉 ↔ 𝑤 = 〈𝑦, 𝑧〉)) |
4 | 3 | anbi1d 630 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑))) |
5 | 4 | drex2 2450 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑) ↔ ∃𝑧(𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑))) |
6 | 5 | drex1 2449 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑) ↔ ∃𝑦∃𝑧(𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑))) |
7 | 6 | abbidv 2811 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑦∃𝑧(𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑)}) |
8 | df-opab 5229 | . 2 ⊢ {〈𝑥, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑧(𝑤 = 〈𝑥, 𝑧〉 ∧ 𝜑)} | |
9 | df-opab 5229 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑦∃𝑧(𝑤 = 〈𝑦, 𝑧〉 ∧ 𝜑)} | |
10 | 7, 8, 9 | 3eqtr4g 2805 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑥, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 {cab 2717 〈cop 4654 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |