Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dropab1 Structured version   Visualization version   GIF version

Theorem dropab1 44478
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dropab1 (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑})

Proof of Theorem dropab1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4825 . . . . . . . 8 (𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
21sps 2188 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
32eqeq2d 2742 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑤 = ⟨𝑥, 𝑧⟩ ↔ 𝑤 = ⟨𝑦, 𝑧⟩))
43anbi1d 631 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
54drex2 2442 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
65drex1 2441 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)))
76abbidv 2797 . 2 (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)})
8 df-opab 5154 . 2 {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝜑)}
9 df-opab 5154 . 2 {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)}
107, 8, 93eqtr4g 2791 1 (∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  {cab 2709  cop 4582  {copab 5153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-opab 5154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator