Step | Hyp | Ref
| Expression |
1 | | islshpat.v |
. . 3
⊢ 𝑉 = (Base‘𝑊) |
2 | | eqid 2738 |
. . 3
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
3 | | islshpat.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑊) |
4 | | islshpat.p |
. . 3
⊢ ⊕ =
(LSSum‘𝑊) |
5 | | islshpat.h |
. . 3
⊢ 𝐻 = (LSHyp‘𝑊) |
6 | | islshpat.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | 1, 2, 3, 4, 5, 6 | islshpsm 36921 |
. 2
⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
8 | | df-3an 1087 |
. . . . 5
⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
9 | | r19.42v 3276 |
. . . . 5
⊢
(∃𝑣 ∈
𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
10 | 8, 9 | bitr4i 277 |
. . . 4
⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
11 | | df-rex 3069 |
. . . . . . . 8
⊢
(∃𝑣 ∈
𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
12 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑣 = (0g‘𝑊)) |
13 | 12 | sneqd 4570 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → {𝑣} = {(0g‘𝑊)}) |
14 | 13 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = ((LSpan‘𝑊)‘{(0g‘𝑊)})) |
15 | 6 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑊 ∈ LMod) |
16 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(0g‘𝑊) = (0g‘𝑊) |
17 | 16, 2 | lspsn0 20185 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 ∈ LMod →
((LSpan‘𝑊)‘{(0g‘𝑊)}) =
{(0g‘𝑊)}) |
18 | 15, 17 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → ((LSpan‘𝑊)‘{(0g‘𝑊)}) =
{(0g‘𝑊)}) |
19 | 14, 18 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = {(0g‘𝑊)}) |
20 | 19 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = (𝑈 ⊕
{(0g‘𝑊)})) |
21 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑈 ∈ 𝑆) |
22 | 3 | lsssubg 20134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
23 | 15, 21, 22 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
24 | 16, 4 | lsm01 19192 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ (SubGrp‘𝑊) → (𝑈 ⊕
{(0g‘𝑊)})
= 𝑈) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → (𝑈 ⊕
{(0g‘𝑊)})
= 𝑈) |
26 | 20, 25 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑈) |
27 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑈 ≠ 𝑉) |
28 | 26, 27 | eqnetrd 3010 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉) |
29 | 28 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → (𝑣 = (0g‘𝑊) → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉)) |
30 | 29 | necon2d 2965 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → ((𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉 → 𝑣 ≠ (0g‘𝑊))) |
31 | 30 | pm4.71rd 562 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → ((𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉 ↔ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
32 | 31 | pm5.32da 578 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) |
33 | 32 | pm5.32da 578 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))) |
34 | | eldifsn 4717 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ↔ (𝑣 ∈ 𝑉 ∧ 𝑣 ≠ (0g‘𝑊))) |
35 | 34 | anbi1i 623 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑣 ∈ 𝑉 ∧ 𝑣 ≠ (0g‘𝑊)) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
36 | | anass 468 |
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ 𝑉 ∧ 𝑣 ≠ (0g‘𝑊)) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ 𝑉 ∧ (𝑣 ≠ (0g‘𝑊) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) |
37 | | an12 641 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ≠ (0g‘𝑊) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
38 | 37 | anbi2i 622 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ 𝑉 ∧ (𝑣 ≠ (0g‘𝑊) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) |
39 | 36, 38 | bitri 274 |
. . . . . . . . . . 11
⊢ (((𝑣 ∈ 𝑉 ∧ 𝑣 ≠ (0g‘𝑊)) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) |
40 | 35, 39 | bitr2i 275 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
41 | 33, 40 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) |
42 | 41 | exbidv 1925 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑣(𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) |
43 | 11, 42 | syl5bb 282 |
. . . . . . 7
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) |
44 | | fvex 6769 |
. . . . . . . . . 10
⊢
((LSpan‘𝑊)‘{𝑣}) ∈ V |
45 | 44 | rexcom4b 3451 |
. . . . . . . . 9
⊢
(∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
46 | | df-rex 3069 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
47 | 45, 46 | bitr2i 275 |
. . . . . . . 8
⊢
(∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣}))) |
48 | | ancom 460 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
49 | 48 | rexbii 3177 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})(((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
50 | 49 | exbii 1851 |
. . . . . . . 8
⊢
(∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
51 | 47, 50 | bitri 274 |
. . . . . . 7
⊢
(∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
52 | 43, 51 | bitrdi 286 |
. . . . . 6
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) |
53 | | r19.41v 3273 |
. . . . . . . 8
⊢
(∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉))) |
54 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊕ 𝑞) = (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣}))) |
55 | 54 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 ⊕ 𝑞) = 𝑉 ↔ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) |
56 | 55 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
57 | 56 | pm5.32i 574 |
. . . . . . . . 9
⊢ ((𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
58 | 57 | rexbii 3177 |
. . . . . . . 8
⊢
(∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
59 | 53, 58 | bitr3i 276 |
. . . . . . 7
⊢
((∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
60 | 59 | exbii 1851 |
. . . . . 6
⊢
(∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) |
61 | 52, 60 | bitr4di 288 |
. . . . 5
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) |
62 | | islshpat.a |
. . . . . . . . 9
⊢ 𝐴 = (LSAtoms‘𝑊) |
63 | 1, 2, 16, 62 | islsat 36932 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod → (𝑞 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}))) |
64 | 6, 63 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑞 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}))) |
65 | 64 | anbi1d 629 |
. . . . . 6
⊢ (𝜑 → ((𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) |
66 | 65 | exbidv 1925 |
. . . . 5
⊢ (𝜑 → (∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) |
67 | 61, 66 | bitr4d 281 |
. . . 4
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) |
68 | 10, 67 | syl5bb 282 |
. . 3
⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) |
69 | | df-3an 1087 |
. . . 4
⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉)) |
70 | | r19.42v 3276 |
. . . . 5
⊢
(∃𝑞 ∈
𝐴 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉)) |
71 | | df-rex 3069 |
. . . . 5
⊢
(∃𝑞 ∈
𝐴 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉) ↔ ∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉))) |
72 | 70, 71 | bitr3i 276 |
. . . 4
⊢ (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉) ↔ ∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉))) |
73 | 69, 72 | bitr2i 275 |
. . 3
⊢
(∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉)) |
74 | 68, 73 | bitrdi 286 |
. 2
⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉))) |
75 | 7, 74 | bitrd 278 |
1
⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉))) |