Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpat Structured version   Visualization version   GIF version

Theorem islshpat 36717
Description: Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 36680. (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
islshpat.v 𝑉 = (Base‘𝑊)
islshpat.s 𝑆 = (LSubSp‘𝑊)
islshpat.p = (LSSum‘𝑊)
islshpat.h 𝐻 = (LSHyp‘𝑊)
islshpat.a 𝐴 = (LSAtoms‘𝑊)
islshpat.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
islshpat (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
Distinct variable groups:   ,𝑞   𝑆,𝑞   𝑈,𝑞   𝑉,𝑞   𝑊,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐴(𝑞)   𝐻(𝑞)

Proof of Theorem islshpat
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 islshpat.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2736 . . 3 (LSpan‘𝑊) = (LSpan‘𝑊)
3 islshpat.s . . 3 𝑆 = (LSubSp‘𝑊)
4 islshpat.p . . 3 = (LSSum‘𝑊)
5 islshpat.h . . 3 𝐻 = (LSHyp‘𝑊)
6 islshpat.w . . 3 (𝜑𝑊 ∈ LMod)
71, 2, 3, 4, 5, 6islshpsm 36680 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
8 df-3an 1091 . . . . 5 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
9 r19.42v 3253 . . . . 5 (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
108, 9bitr4i 281 . . . 4 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
11 df-rex 3057 . . . . . . . 8 (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
12 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑣 = (0g𝑊))
1312sneqd 4539 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → {𝑣} = {(0g𝑊)})
1413fveq2d 6699 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = ((LSpan‘𝑊)‘{(0g𝑊)}))
156ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑊 ∈ LMod)
16 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (0g𝑊) = (0g𝑊)
1716, 2lspsn0 19999 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘{(0g𝑊)}) = {(0g𝑊)})
1815, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{(0g𝑊)}) = {(0g𝑊)})
1914, 18eqtrd 2771 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = {(0g𝑊)})
2019oveq2d 7207 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = (𝑈 {(0g𝑊)}))
21 simplrl 777 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈𝑆)
223lsssubg 19948 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
2315, 21, 22syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
2416, 4lsm01 19015 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (SubGrp‘𝑊) → (𝑈 {(0g𝑊)}) = 𝑈)
2523, 24syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 {(0g𝑊)}) = 𝑈)
2620, 25eqtrd 2771 . . . . . . . . . . . . . . . 16 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑈)
27 simplrr 778 . . . . . . . . . . . . . . . 16 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈𝑉)
2826, 27eqnetrd 2999 . . . . . . . . . . . . . . 15 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉)
2928ex 416 . . . . . . . . . . . . . 14 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → (𝑣 = (0g𝑊) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉))
3029necon2d 2955 . . . . . . . . . . . . 13 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → ((𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉𝑣 ≠ (0g𝑊)))
3130pm4.71rd 566 . . . . . . . . . . . 12 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → ((𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉 ↔ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3231pm5.32da 582 . . . . . . . . . . 11 ((𝜑𝑣𝑉) → (((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
3332pm5.32da 582 . . . . . . . . . 10 (𝜑 → ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))))
34 eldifsn 4686 . . . . . . . . . . . 12 (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ↔ (𝑣𝑉𝑣 ≠ (0g𝑊)))
3534anbi1i 627 . . . . . . . . . . 11 ((𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
36 anass 472 . . . . . . . . . . . 12 (((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ (𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
37 an12 645 . . . . . . . . . . . . 13 ((𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3837anbi2i 626 . . . . . . . . . . . 12 ((𝑣𝑉 ∧ (𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
3936, 38bitri 278 . . . . . . . . . . 11 (((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4035, 39bitr2i 279 . . . . . . . . . 10 ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4133, 40bitrdi 290 . . . . . . . . 9 (𝜑 → ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4241exbidv 1929 . . . . . . . 8 (𝜑 → (∃𝑣(𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4311, 42syl5bb 286 . . . . . . 7 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
44 fvex 6708 . . . . . . . . . 10 ((LSpan‘𝑊)‘{𝑣}) ∈ V
4544rexcom4b 3427 . . . . . . . . 9 (∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
46 df-rex 3057 . . . . . . . . 9 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4745, 46bitr2i 279 . . . . . . . 8 (∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})))
48 ancom 464 . . . . . . . . . 10 ((((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4948rexbii 3160 . . . . . . . . 9 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5049exbii 1855 . . . . . . . 8 (∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5147, 50bitri 278 . . . . . . 7 (∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5243, 51bitrdi 290 . . . . . 6 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
53 r19.41v 3250 . . . . . . . 8 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
54 oveq2 7199 . . . . . . . . . . . 12 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 𝑞) = (𝑈 ((LSpan‘𝑊)‘{𝑣})))
5554eqeq1d 2738 . . . . . . . . . . 11 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 𝑞) = 𝑉 ↔ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
5655anbi2d 632 . . . . . . . . . 10 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5756pm5.32i 578 . . . . . . . . 9 ((𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5857rexbii 3160 . . . . . . . 8 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5953, 58bitr3i 280 . . . . . . 7 ((∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
6059exbii 1855 . . . . . 6 (∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
6152, 60bitr4di 292 . . . . 5 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
62 islshpat.a . . . . . . . . 9 𝐴 = (LSAtoms‘𝑊)
631, 2, 16, 62islsat 36691 . . . . . . . 8 (𝑊 ∈ LMod → (𝑞𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣})))
646, 63syl 17 . . . . . . 7 (𝜑 → (𝑞𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣})))
6564anbi1d 633 . . . . . 6 (𝜑 → ((𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6665exbidv 1929 . . . . 5 (𝜑 → (∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6761, 66bitr4d 285 . . . 4 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6810, 67syl5bb 286 . . 3 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
69 df-3an 1091 . . . 4 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
70 r19.42v 3253 . . . . 5 (∃𝑞𝐴 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
71 df-rex 3057 . . . . 5 (∃𝑞𝐴 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
7270, 71bitr3i 280 . . . 4 (((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
7369, 72bitr2i 279 . . 3 (∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
7468, 73bitrdi 290 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
757, 74bitrd 282 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wne 2932  wrex 3052  cdif 3850  {csn 4527  cfv 6358  (class class class)co 7191  Basecbs 16666  0gc0g 16898  SubGrpcsubg 18491  LSSumclsm 18977  LModclmod 19853  LSubSpclss 19922  LSpanclspn 19962  LSAtomsclsa 36674  LSHypclsh 36675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-cntz 18665  df-lsm 18979  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lsatoms 36676  df-lshyp 36677
This theorem is referenced by:  islshpcv  36753
  Copyright terms: Public domain W3C validator