Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpat Structured version   Visualization version   GIF version

Theorem islshpat 38999
Description: Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 38962. (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
islshpat.v 𝑉 = (Base‘𝑊)
islshpat.s 𝑆 = (LSubSp‘𝑊)
islshpat.p = (LSSum‘𝑊)
islshpat.h 𝐻 = (LSHyp‘𝑊)
islshpat.a 𝐴 = (LSAtoms‘𝑊)
islshpat.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
islshpat (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
Distinct variable groups:   ,𝑞   𝑆,𝑞   𝑈,𝑞   𝑉,𝑞   𝑊,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐴(𝑞)   𝐻(𝑞)

Proof of Theorem islshpat
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 islshpat.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2735 . . 3 (LSpan‘𝑊) = (LSpan‘𝑊)
3 islshpat.s . . 3 𝑆 = (LSubSp‘𝑊)
4 islshpat.p . . 3 = (LSSum‘𝑊)
5 islshpat.h . . 3 𝐻 = (LSHyp‘𝑊)
6 islshpat.w . . 3 (𝜑𝑊 ∈ LMod)
71, 2, 3, 4, 5, 6islshpsm 38962 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
8 df-3an 1088 . . . . 5 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
9 r19.42v 3189 . . . . 5 (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
108, 9bitr4i 278 . . . 4 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
11 df-rex 3069 . . . . . . . 8 (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
12 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑣 = (0g𝑊))
1312sneqd 4643 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → {𝑣} = {(0g𝑊)})
1413fveq2d 6911 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = ((LSpan‘𝑊)‘{(0g𝑊)}))
156ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑊 ∈ LMod)
16 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (0g𝑊) = (0g𝑊)
1716, 2lspsn0 21024 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘{(0g𝑊)}) = {(0g𝑊)})
1815, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{(0g𝑊)}) = {(0g𝑊)})
1914, 18eqtrd 2775 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = {(0g𝑊)})
2019oveq2d 7447 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = (𝑈 {(0g𝑊)}))
21 simplrl 777 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈𝑆)
223lsssubg 20973 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
2315, 21, 22syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
2416, 4lsm01 19704 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (SubGrp‘𝑊) → (𝑈 {(0g𝑊)}) = 𝑈)
2523, 24syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 {(0g𝑊)}) = 𝑈)
2620, 25eqtrd 2775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑈)
27 simplrr 778 . . . . . . . . . . . . . . . 16 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈𝑉)
2826, 27eqnetrd 3006 . . . . . . . . . . . . . . 15 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉)
2928ex 412 . . . . . . . . . . . . . 14 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → (𝑣 = (0g𝑊) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉))
3029necon2d 2961 . . . . . . . . . . . . 13 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → ((𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉𝑣 ≠ (0g𝑊)))
3130pm4.71rd 562 . . . . . . . . . . . 12 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → ((𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉 ↔ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3231pm5.32da 579 . . . . . . . . . . 11 ((𝜑𝑣𝑉) → (((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
3332pm5.32da 579 . . . . . . . . . 10 (𝜑 → ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))))
34 eldifsn 4791 . . . . . . . . . . . 12 (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ↔ (𝑣𝑉𝑣 ≠ (0g𝑊)))
3534anbi1i 624 . . . . . . . . . . 11 ((𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
36 anass 468 . . . . . . . . . . . 12 (((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ (𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
37 an12 645 . . . . . . . . . . . . 13 ((𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3837anbi2i 623 . . . . . . . . . . . 12 ((𝑣𝑉 ∧ (𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
3936, 38bitri 275 . . . . . . . . . . 11 (((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4035, 39bitr2i 276 . . . . . . . . . 10 ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4133, 40bitrdi 287 . . . . . . . . 9 (𝜑 → ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4241exbidv 1919 . . . . . . . 8 (𝜑 → (∃𝑣(𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4311, 42bitrid 283 . . . . . . 7 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
44 fvex 6920 . . . . . . . . . 10 ((LSpan‘𝑊)‘{𝑣}) ∈ V
4544rexcom4b 3511 . . . . . . . . 9 (∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
46 df-rex 3069 . . . . . . . . 9 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4745, 46bitr2i 276 . . . . . . . 8 (∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})))
48 ancom 460 . . . . . . . . . 10 ((((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4948rexbii 3092 . . . . . . . . 9 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5049exbii 1845 . . . . . . . 8 (∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5147, 50bitri 275 . . . . . . 7 (∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5243, 51bitrdi 287 . . . . . 6 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
53 r19.41v 3187 . . . . . . . 8 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
54 oveq2 7439 . . . . . . . . . . . 12 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 𝑞) = (𝑈 ((LSpan‘𝑊)‘{𝑣})))
5554eqeq1d 2737 . . . . . . . . . . 11 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 𝑞) = 𝑉 ↔ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
5655anbi2d 630 . . . . . . . . . 10 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5756pm5.32i 574 . . . . . . . . 9 ((𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5857rexbii 3092 . . . . . . . 8 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5953, 58bitr3i 277 . . . . . . 7 ((∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
6059exbii 1845 . . . . . 6 (∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
6152, 60bitr4di 289 . . . . 5 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
62 islshpat.a . . . . . . . . 9 𝐴 = (LSAtoms‘𝑊)
631, 2, 16, 62islsat 38973 . . . . . . . 8 (𝑊 ∈ LMod → (𝑞𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣})))
646, 63syl 17 . . . . . . 7 (𝜑 → (𝑞𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣})))
6564anbi1d 631 . . . . . 6 (𝜑 → ((𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6665exbidv 1919 . . . . 5 (𝜑 → (∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6761, 66bitr4d 282 . . . 4 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6810, 67bitrid 283 . . 3 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
69 df-3an 1088 . . . 4 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
70 r19.42v 3189 . . . . 5 (∃𝑞𝐴 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
71 df-rex 3069 . . . . 5 (∃𝑞𝐴 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
7270, 71bitr3i 277 . . . 4 (((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
7369, 72bitr2i 276 . . 3 (∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
7468, 73bitrdi 287 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
757, 74bitrd 279 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  cdif 3960  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  0gc0g 17486  SubGrpcsubg 19151  LSSumclsm 19667  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LSAtomsclsa 38956  LSHypclsh 38957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lsatoms 38958  df-lshyp 38959
This theorem is referenced by:  islshpcv  39035
  Copyright terms: Public domain W3C validator