| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | islshpat.v | . . 3
⊢ 𝑉 = (Base‘𝑊) | 
| 2 |  | eqid 2737 | . . 3
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) | 
| 3 |  | islshpat.s | . . 3
⊢ 𝑆 = (LSubSp‘𝑊) | 
| 4 |  | islshpat.p | . . 3
⊢  ⊕ =
(LSSum‘𝑊) | 
| 5 |  | islshpat.h | . . 3
⊢ 𝐻 = (LSHyp‘𝑊) | 
| 6 |  | islshpat.w | . . 3
⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 7 | 1, 2, 3, 4, 5, 6 | islshpsm 38981 | . 2
⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 8 |  | df-3an 1089 | . . . . 5
⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) | 
| 9 |  | r19.42v 3191 | . . . . 5
⊢
(∃𝑣 ∈
𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) | 
| 10 | 8, 9 | bitr4i 278 | . . . 4
⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) | 
| 11 |  | df-rex 3071 | . . . . . . . 8
⊢
(∃𝑣 ∈
𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 12 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑣 = (0g‘𝑊)) | 
| 13 | 12 | sneqd 4638 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → {𝑣} = {(0g‘𝑊)}) | 
| 14 | 13 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = ((LSpan‘𝑊)‘{(0g‘𝑊)})) | 
| 15 | 6 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑊 ∈ LMod) | 
| 16 |  | eqid 2737 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(0g‘𝑊) = (0g‘𝑊) | 
| 17 | 16, 2 | lspsn0 21006 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 ∈ LMod →
((LSpan‘𝑊)‘{(0g‘𝑊)}) =
{(0g‘𝑊)}) | 
| 18 | 15, 17 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → ((LSpan‘𝑊)‘{(0g‘𝑊)}) =
{(0g‘𝑊)}) | 
| 19 | 14, 18 | eqtrd 2777 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = {(0g‘𝑊)}) | 
| 20 | 19 | oveq2d 7447 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = (𝑈 ⊕
{(0g‘𝑊)})) | 
| 21 |  | simplrl 777 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑈 ∈ 𝑆) | 
| 22 | 3 | lsssubg 20955 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) | 
| 23 | 15, 21, 22 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) | 
| 24 | 16, 4 | lsm01 19689 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ (SubGrp‘𝑊) → (𝑈 ⊕
{(0g‘𝑊)})
= 𝑈) | 
| 25 | 23, 24 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → (𝑈 ⊕
{(0g‘𝑊)})
= 𝑈) | 
| 26 | 20, 25 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑈) | 
| 27 |  | simplrr 778 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → 𝑈 ≠ 𝑉) | 
| 28 | 26, 27 | eqnetrd 3008 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 = (0g‘𝑊)) → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉) | 
| 29 | 28 | ex 412 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → (𝑣 = (0g‘𝑊) → (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉)) | 
| 30 | 29 | necon2d 2963 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → ((𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉 → 𝑣 ≠ (0g‘𝑊))) | 
| 31 | 30 | pm4.71rd 562 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ 𝑉) ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → ((𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉 ↔ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 32 | 31 | pm5.32da 579 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) | 
| 33 | 32 | pm5.32da 579 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))) | 
| 34 |  | eldifsn 4786 | . . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ↔ (𝑣 ∈ 𝑉 ∧ 𝑣 ≠ (0g‘𝑊))) | 
| 35 | 34 | anbi1i 624 | . . . . . . . . . . 11
⊢ ((𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑣 ∈ 𝑉 ∧ 𝑣 ≠ (0g‘𝑊)) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 36 |  | anass 468 | . . . . . . . . . . . 12
⊢ (((𝑣 ∈ 𝑉 ∧ 𝑣 ≠ (0g‘𝑊)) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ 𝑉 ∧ (𝑣 ≠ (0g‘𝑊) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) | 
| 37 |  | an12 645 | . . . . . . . . . . . . 13
⊢ ((𝑣 ≠ (0g‘𝑊) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 38 | 37 | anbi2i 623 | . . . . . . . . . . . 12
⊢ ((𝑣 ∈ 𝑉 ∧ (𝑣 ≠ (0g‘𝑊) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) | 
| 39 | 36, 38 | bitri 275 | . . . . . . . . . . 11
⊢ (((𝑣 ∈ 𝑉 ∧ 𝑣 ≠ (0g‘𝑊)) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) | 
| 40 | 35, 39 | bitr2i 276 | . . . . . . . . . 10
⊢ ((𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑣 ≠ (0g‘𝑊) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 41 | 33, 40 | bitrdi 287 | . . . . . . . . 9
⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) | 
| 42 | 41 | exbidv 1921 | . . . . . . . 8
⊢ (𝜑 → (∃𝑣(𝑣 ∈ 𝑉 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) | 
| 43 | 11, 42 | bitrid 283 | . . . . . . 7
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) | 
| 44 |  | fvex 6919 | . . . . . . . . . 10
⊢
((LSpan‘𝑊)‘{𝑣}) ∈ V | 
| 45 | 44 | rexcom4b 3513 | . . . . . . . . 9
⊢
(∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) | 
| 46 |  | df-rex 3071 | . . . . . . . . 9
⊢
(∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 47 | 45, 46 | bitr2i 276 | . . . . . . . 8
⊢
(∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣}))) | 
| 48 |  | ancom 460 | . . . . . . . . . 10
⊢ ((((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 49 | 48 | rexbii 3094 | . . . . . . . . 9
⊢
(∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})(((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 50 | 49 | exbii 1848 | . . . . . . . 8
⊢
(∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 51 | 47, 50 | bitri 275 | . . . . . . 7
⊢
(∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 52 | 43, 51 | bitrdi 287 | . . . . . 6
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))) | 
| 53 |  | r19.41v 3189 | . . . . . . . 8
⊢
(∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉))) | 
| 54 |  | oveq2 7439 | . . . . . . . . . . . 12
⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ⊕ 𝑞) = (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣}))) | 
| 55 | 54 | eqeq1d 2739 | . . . . . . . . . . 11
⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 ⊕ 𝑞) = 𝑉 ↔ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) | 
| 56 | 55 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 57 | 56 | pm5.32i 574 | . . . . . . . . 9
⊢ ((𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 58 | 57 | rexbii 3094 | . . . . . . . 8
⊢
(∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 59 | 53, 58 | bitr3i 277 | . . . . . . 7
⊢
((∃𝑣 ∈
(𝑉 ∖
{(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 60 | 59 | exbii 1848 | . . . . . 6
⊢
(∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ ∃𝑞∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) | 
| 61 | 52, 60 | bitr4di 289 | . . . . 5
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) | 
| 62 |  | islshpat.a | . . . . . . . . 9
⊢ 𝐴 = (LSAtoms‘𝑊) | 
| 63 | 1, 2, 16, 62 | islsat 38992 | . . . . . . . 8
⊢ (𝑊 ∈ LMod → (𝑞 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}))) | 
| 64 | 6, 63 | syl 17 | . . . . . . 7
⊢ (𝜑 → (𝑞 ∈ 𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}))) | 
| 65 | 64 | anbi1d 631 | . . . . . 6
⊢ (𝜑 → ((𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) | 
| 66 | 65 | exbidv 1921 | . . . . 5
⊢ (𝜑 → (∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g‘𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) | 
| 67 | 61, 66 | bitr4d 282 | . . . 4
⊢ (𝜑 → (∃𝑣 ∈ 𝑉 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) | 
| 68 | 10, 67 | bitrid 283 | . . 3
⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)))) | 
| 69 |  | df-3an 1089 | . . . 4
⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉)) | 
| 70 |  | r19.42v 3191 | . . . . 5
⊢
(∃𝑞 ∈
𝐴 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉)) | 
| 71 |  | df-rex 3071 | . . . . 5
⊢
(∃𝑞 ∈
𝐴 ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉) ↔ ∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉))) | 
| 72 | 70, 71 | bitr3i 277 | . . . 4
⊢ (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉) ↔ ∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉))) | 
| 73 | 69, 72 | bitr2i 276 | . . 3
⊢
(∃𝑞(𝑞 ∈ 𝐴 ∧ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ⊕ 𝑞) = 𝑉)) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉)) | 
| 74 | 68, 73 | bitrdi 287 | . 2
⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉))) | 
| 75 | 7, 74 | bitrd 279 | 1
⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉))) |