Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpat Structured version   Visualization version   GIF version

Theorem islshpat 36958
Description: Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 36921. (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
islshpat.v 𝑉 = (Base‘𝑊)
islshpat.s 𝑆 = (LSubSp‘𝑊)
islshpat.p = (LSSum‘𝑊)
islshpat.h 𝐻 = (LSHyp‘𝑊)
islshpat.a 𝐴 = (LSAtoms‘𝑊)
islshpat.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
islshpat (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
Distinct variable groups:   ,𝑞   𝑆,𝑞   𝑈,𝑞   𝑉,𝑞   𝑊,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐴(𝑞)   𝐻(𝑞)

Proof of Theorem islshpat
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 islshpat.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2738 . . 3 (LSpan‘𝑊) = (LSpan‘𝑊)
3 islshpat.s . . 3 𝑆 = (LSubSp‘𝑊)
4 islshpat.p . . 3 = (LSSum‘𝑊)
5 islshpat.h . . 3 𝐻 = (LSHyp‘𝑊)
6 islshpat.w . . 3 (𝜑𝑊 ∈ LMod)
71, 2, 3, 4, 5, 6islshpsm 36921 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
8 df-3an 1087 . . . . 5 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
9 r19.42v 3276 . . . . 5 (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
108, 9bitr4i 277 . . . 4 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
11 df-rex 3069 . . . . . . . 8 (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
12 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑣 = (0g𝑊))
1312sneqd 4570 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → {𝑣} = {(0g𝑊)})
1413fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = ((LSpan‘𝑊)‘{(0g𝑊)}))
156ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑊 ∈ LMod)
16 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (0g𝑊) = (0g𝑊)
1716, 2lspsn0 20185 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘{(0g𝑊)}) = {(0g𝑊)})
1815, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{(0g𝑊)}) = {(0g𝑊)})
1914, 18eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = {(0g𝑊)})
2019oveq2d 7271 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = (𝑈 {(0g𝑊)}))
21 simplrl 773 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈𝑆)
223lsssubg 20134 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
2315, 21, 22syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
2416, 4lsm01 19192 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (SubGrp‘𝑊) → (𝑈 {(0g𝑊)}) = 𝑈)
2523, 24syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 {(0g𝑊)}) = 𝑈)
2620, 25eqtrd 2778 . . . . . . . . . . . . . . . 16 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑈)
27 simplrr 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈𝑉)
2826, 27eqnetrd 3010 . . . . . . . . . . . . . . 15 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉)
2928ex 412 . . . . . . . . . . . . . 14 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → (𝑣 = (0g𝑊) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉))
3029necon2d 2965 . . . . . . . . . . . . 13 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → ((𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉𝑣 ≠ (0g𝑊)))
3130pm4.71rd 562 . . . . . . . . . . . 12 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → ((𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉 ↔ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3231pm5.32da 578 . . . . . . . . . . 11 ((𝜑𝑣𝑉) → (((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
3332pm5.32da 578 . . . . . . . . . 10 (𝜑 → ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))))
34 eldifsn 4717 . . . . . . . . . . . 12 (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ↔ (𝑣𝑉𝑣 ≠ (0g𝑊)))
3534anbi1i 623 . . . . . . . . . . 11 ((𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
36 anass 468 . . . . . . . . . . . 12 (((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ (𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
37 an12 641 . . . . . . . . . . . . 13 ((𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3837anbi2i 622 . . . . . . . . . . . 12 ((𝑣𝑉 ∧ (𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
3936, 38bitri 274 . . . . . . . . . . 11 (((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4035, 39bitr2i 275 . . . . . . . . . 10 ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4133, 40bitrdi 286 . . . . . . . . 9 (𝜑 → ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4241exbidv 1925 . . . . . . . 8 (𝜑 → (∃𝑣(𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4311, 42syl5bb 282 . . . . . . 7 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
44 fvex 6769 . . . . . . . . . 10 ((LSpan‘𝑊)‘{𝑣}) ∈ V
4544rexcom4b 3451 . . . . . . . . 9 (∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
46 df-rex 3069 . . . . . . . . 9 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4745, 46bitr2i 275 . . . . . . . 8 (∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})))
48 ancom 460 . . . . . . . . . 10 ((((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4948rexbii 3177 . . . . . . . . 9 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5049exbii 1851 . . . . . . . 8 (∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5147, 50bitri 274 . . . . . . 7 (∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5243, 51bitrdi 286 . . . . . 6 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
53 r19.41v 3273 . . . . . . . 8 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
54 oveq2 7263 . . . . . . . . . . . 12 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 𝑞) = (𝑈 ((LSpan‘𝑊)‘{𝑣})))
5554eqeq1d 2740 . . . . . . . . . . 11 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 𝑞) = 𝑉 ↔ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
5655anbi2d 628 . . . . . . . . . 10 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5756pm5.32i 574 . . . . . . . . 9 ((𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5857rexbii 3177 . . . . . . . 8 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5953, 58bitr3i 276 . . . . . . 7 ((∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
6059exbii 1851 . . . . . 6 (∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
6152, 60bitr4di 288 . . . . 5 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
62 islshpat.a . . . . . . . . 9 𝐴 = (LSAtoms‘𝑊)
631, 2, 16, 62islsat 36932 . . . . . . . 8 (𝑊 ∈ LMod → (𝑞𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣})))
646, 63syl 17 . . . . . . 7 (𝜑 → (𝑞𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣})))
6564anbi1d 629 . . . . . 6 (𝜑 → ((𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6665exbidv 1925 . . . . 5 (𝜑 → (∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6761, 66bitr4d 281 . . . 4 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6810, 67syl5bb 282 . . 3 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
69 df-3an 1087 . . . 4 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
70 r19.42v 3276 . . . . 5 (∃𝑞𝐴 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
71 df-rex 3069 . . . . 5 (∃𝑞𝐴 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
7270, 71bitr3i 276 . . . 4 (((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
7369, 72bitr2i 275 . . 3 (∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
7468, 73bitrdi 286 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
757, 74bitrd 278 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  cdif 3880  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  0gc0g 17067  SubGrpcsubg 18664  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LSAtomsclsa 36915  LSHypclsh 36916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lsatoms 36917  df-lshyp 36918
This theorem is referenced by:  islshpcv  36994
  Copyright terms: Public domain W3C validator