Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfbrsuc Structured version   Visualization version   GIF version

Theorem satfbrsuc 33041
Description: The binary relation of a satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 13-Oct-2023.)
Hypotheses
Ref Expression
satfbrsuc.s 𝑆 = (𝑀 Sat 𝐸)
satfbrsuc.p 𝑃 = (𝑆𝑁)
Assertion
Ref Expression
satfbrsuc (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
Distinct variable groups:   𝐴,𝑖,𝑢,𝑣   𝐵,𝑖,𝑢,𝑣   𝑓,𝐸,𝑖,𝑢,𝑣,𝑧   𝑓,𝑀,𝑖,𝑢,𝑣,𝑧   𝑢,𝑁,𝑣   𝑣,𝑃   𝑢,𝑆,𝑣   𝑢,𝑉   𝑢,𝑊
Allowed substitution hints:   𝐴(𝑧,𝑓)   𝐵(𝑧,𝑓)   𝑃(𝑧,𝑢,𝑓,𝑖)   𝑆(𝑧,𝑓,𝑖)   𝑁(𝑧,𝑓,𝑖)   𝑉(𝑧,𝑣,𝑓,𝑖)   𝑊(𝑧,𝑣,𝑓,𝑖)   𝑋(𝑧,𝑣,𝑢,𝑓,𝑖)   𝑌(𝑧,𝑣,𝑢,𝑓,𝑖)

Proof of Theorem satfbrsuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfbrsuc.s . . . . . 6 𝑆 = (𝑀 Sat 𝐸)
21satfvsuc 33036 . . . . 5 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (𝑆‘suc 𝑁) = ((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
323expa 1120 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω) → (𝑆‘suc 𝑁) = ((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
433adant3 1134 . . 3 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝑆‘suc 𝑁) = ((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
54breqd 5064 . 2 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵))
6 brun 5104 . . . 4 (𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵 ↔ (𝐴(𝑆𝑁)𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}𝐵))
7 satfbrsuc.p . . . . . . . 8 𝑃 = (𝑆𝑁)
87eqcomi 2746 . . . . . . 7 (𝑆𝑁) = 𝑃
98breqi 5059 . . . . . 6 (𝐴(𝑆𝑁)𝐵𝐴𝑃𝐵)
109a1i 11 . . . . 5 ((𝐴𝑋𝐵𝑌) → (𝐴(𝑆𝑁)𝐵𝐴𝑃𝐵))
11 eqeq1 2741 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝐴 = ((1st𝑢)⊼𝑔(1st𝑣))))
12 eqeq1 2741 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ↔ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
1311, 12bi2anan9 639 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
1413rexbidv 3216 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
15 eqeq1 2741 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝐴 = ∀𝑔𝑖(1st𝑢)))
16 eqeq1 2741 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ↔ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
1715, 16bi2anan9 639 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
1817rexbidv 3216 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
1914, 18orbi12d 919 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
2019rexbidv 3216 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑢𝑃 (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
218rexeqi 3324 . . . . . . . . 9 (∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
2221orbi1i 914 . . . . . . . 8 ((∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
238, 22rexeqbii 3245 . . . . . . 7 (∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢𝑃 (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
2423opabbii 5120 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑃 (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
2520, 24brabga 5415 . . . . 5 ((𝐴𝑋𝐵𝑌) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}𝐵 ↔ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
2610, 25orbi12d 919 . . . 4 ((𝐴𝑋𝐵𝑌) → ((𝐴(𝑆𝑁)𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}𝐵) ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
276, 26syl5bb 286 . . 3 ((𝐴𝑋𝐵𝑌) → (𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
28273ad2ant3 1137 . 2 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
295, 28bitrd 282 1 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  {crab 3065  cdif 3863  cun 3864  cin 3865  {csn 4541  cop 4547   class class class wbr 5053  {copab 5115  cres 5553  suc csuc 6215  cfv 6380  (class class class)co 7213  ωcom 7644  1st c1st 7759  2nd c2nd 7760  m cmap 8508  𝑔cgna 33009  𝑔cgol 33010   Sat csat 33011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-sat 33018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator