Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfbrsuc Structured version   Visualization version   GIF version

Theorem satfbrsuc 35360
Description: The binary relation of a satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 13-Oct-2023.)
Hypotheses
Ref Expression
satfbrsuc.s 𝑆 = (𝑀 Sat 𝐸)
satfbrsuc.p 𝑃 = (𝑆𝑁)
Assertion
Ref Expression
satfbrsuc (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
Distinct variable groups:   𝐴,𝑖,𝑢,𝑣   𝐵,𝑖,𝑢,𝑣   𝑓,𝐸,𝑖,𝑢,𝑣,𝑧   𝑓,𝑀,𝑖,𝑢,𝑣,𝑧   𝑢,𝑁,𝑣   𝑣,𝑃   𝑢,𝑆,𝑣   𝑢,𝑉   𝑢,𝑊
Allowed substitution hints:   𝐴(𝑧,𝑓)   𝐵(𝑧,𝑓)   𝑃(𝑧,𝑢,𝑓,𝑖)   𝑆(𝑧,𝑓,𝑖)   𝑁(𝑧,𝑓,𝑖)   𝑉(𝑧,𝑣,𝑓,𝑖)   𝑊(𝑧,𝑣,𝑓,𝑖)   𝑋(𝑧,𝑣,𝑢,𝑓,𝑖)   𝑌(𝑧,𝑣,𝑢,𝑓,𝑖)

Proof of Theorem satfbrsuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfbrsuc.s . . . . . 6 𝑆 = (𝑀 Sat 𝐸)
21satfvsuc 35355 . . . . 5 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (𝑆‘suc 𝑁) = ((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
323expa 1118 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω) → (𝑆‘suc 𝑁) = ((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
433adant3 1132 . . 3 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝑆‘suc 𝑁) = ((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
54breqd 5121 . 2 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵))
6 brun 5161 . . . 4 (𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵 ↔ (𝐴(𝑆𝑁)𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}𝐵))
7 satfbrsuc.p . . . . . . . 8 𝑃 = (𝑆𝑁)
87eqcomi 2739 . . . . . . 7 (𝑆𝑁) = 𝑃
98breqi 5116 . . . . . 6 (𝐴(𝑆𝑁)𝐵𝐴𝑃𝐵)
109a1i 11 . . . . 5 ((𝐴𝑋𝐵𝑌) → (𝐴(𝑆𝑁)𝐵𝐴𝑃𝐵))
11 eqeq1 2734 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝐴 = ((1st𝑢)⊼𝑔(1st𝑣))))
12 eqeq1 2734 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ↔ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
1311, 12bi2anan9 638 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
1413rexbidv 3158 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
15 eqeq1 2734 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝐴 = ∀𝑔𝑖(1st𝑢)))
16 eqeq1 2734 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ↔ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
1715, 16bi2anan9 638 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
1817rexbidv 3158 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
1914, 18orbi12d 918 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
2019rexbidv 3158 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑢𝑃 (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
218rexeqi 3300 . . . . . . . . 9 (∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
2221orbi1i 913 . . . . . . . 8 ((∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
238, 22rexeqbii 3320 . . . . . . 7 (∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢𝑃 (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
2423opabbii 5177 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑃 (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
2520, 24brabga 5497 . . . . 5 ((𝐴𝑋𝐵𝑌) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}𝐵 ↔ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
2610, 25orbi12d 918 . . . 4 ((𝐴𝑋𝐵𝑌) → ((𝐴(𝑆𝑁)𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}𝐵) ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
276, 26bitrid 283 . . 3 ((𝐴𝑋𝐵𝑌) → (𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
28273ad2ant3 1135 . 2 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
295, 28bitrd 279 1 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  cdif 3914  cun 3915  cin 3916  {csn 4592  cop 4598   class class class wbr 5110  {copab 5172  cres 5643  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  1st c1st 7969  2nd c2nd 7970  m cmap 8802  𝑔cgna 35328  𝑔cgol 35329   Sat csat 35330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-sat 35337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator