Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfbrsuc Structured version   Visualization version   GIF version

Theorem satfbrsuc 35334
Description: The binary relation of a satisfaction predicate as function over wff codes at a successor. (Contributed by AV, 13-Oct-2023.)
Hypotheses
Ref Expression
satfbrsuc.s 𝑆 = (𝑀 Sat 𝐸)
satfbrsuc.p 𝑃 = (𝑆𝑁)
Assertion
Ref Expression
satfbrsuc (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
Distinct variable groups:   𝐴,𝑖,𝑢,𝑣   𝐵,𝑖,𝑢,𝑣   𝑓,𝐸,𝑖,𝑢,𝑣,𝑧   𝑓,𝑀,𝑖,𝑢,𝑣,𝑧   𝑢,𝑁,𝑣   𝑣,𝑃   𝑢,𝑆,𝑣   𝑢,𝑉   𝑢,𝑊
Allowed substitution hints:   𝐴(𝑧,𝑓)   𝐵(𝑧,𝑓)   𝑃(𝑧,𝑢,𝑓,𝑖)   𝑆(𝑧,𝑓,𝑖)   𝑁(𝑧,𝑓,𝑖)   𝑉(𝑧,𝑣,𝑓,𝑖)   𝑊(𝑧,𝑣,𝑓,𝑖)   𝑋(𝑧,𝑣,𝑢,𝑓,𝑖)   𝑌(𝑧,𝑣,𝑢,𝑓,𝑖)

Proof of Theorem satfbrsuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfbrsuc.s . . . . . 6 𝑆 = (𝑀 Sat 𝐸)
21satfvsuc 35329 . . . . 5 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (𝑆‘suc 𝑁) = ((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
323expa 1118 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω) → (𝑆‘suc 𝑁) = ((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
433adant3 1132 . . 3 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝑆‘suc 𝑁) = ((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
54breqd 5177 . 2 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵))
6 brun 5217 . . . 4 (𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵 ↔ (𝐴(𝑆𝑁)𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}𝐵))
7 satfbrsuc.p . . . . . . . 8 𝑃 = (𝑆𝑁)
87eqcomi 2749 . . . . . . 7 (𝑆𝑁) = 𝑃
98breqi 5172 . . . . . 6 (𝐴(𝑆𝑁)𝐵𝐴𝑃𝐵)
109a1i 11 . . . . 5 ((𝐴𝑋𝐵𝑌) → (𝐴(𝑆𝑁)𝐵𝐴𝑃𝐵))
11 eqeq1 2744 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝐴 = ((1st𝑢)⊼𝑔(1st𝑣))))
12 eqeq1 2744 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ↔ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
1311, 12bi2anan9 637 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
1413rexbidv 3185 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
15 eqeq1 2744 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝐴 = ∀𝑔𝑖(1st𝑢)))
16 eqeq1 2744 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ↔ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
1715, 16bi2anan9 637 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
1817rexbidv 3185 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
1914, 18orbi12d 917 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
2019rexbidv 3185 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑢𝑃 (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
218rexeqi 3333 . . . . . . . . 9 (∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
2221orbi1i 912 . . . . . . . 8 ((∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
238, 22rexeqbii 3353 . . . . . . 7 (∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢𝑃 (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
2423opabbii 5233 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑃 (∃𝑣𝑃 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
2520, 24brabga 5553 . . . . 5 ((𝐴𝑋𝐵𝑌) → (𝐴{⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}𝐵 ↔ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
2610, 25orbi12d 917 . . . 4 ((𝐴𝑋𝐵𝑌) → ((𝐴(𝑆𝑁)𝐵𝐴{⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}𝐵) ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
276, 26bitrid 283 . . 3 ((𝐴𝑋𝐵𝑌) → (𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
28273ad2ant3 1135 . 2 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴((𝑆𝑁) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
295, 28bitrd 279 1 (((𝑀𝑉𝐸𝑊) ∧ 𝑁 ∈ ω ∧ (𝐴𝑋𝐵𝑌)) → (𝐴(𝑆‘suc 𝑁)𝐵 ↔ (𝐴𝑃𝐵 ∨ ∃𝑢𝑃 (∃𝑣𝑃 (𝐴 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝐵 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝐴 = ∀𝑔𝑖(1st𝑢) ∧ 𝐵 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cdif 3973  cun 3974  cin 3975  {csn 4648  cop 4654   class class class wbr 5166  {copab 5228  cres 5702  suc csuc 6397  cfv 6573  (class class class)co 7448  ωcom 7903  1st c1st 8028  2nd c2nd 8029  m cmap 8884  𝑔cgna 35302  𝑔cgol 35303   Sat csat 35304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-sat 35311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator