MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3076
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1849 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3058 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3058 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780  wcel 2113  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-rex 3058
This theorem is referenced by:  rexbiia  3078  rexeqbii  3312  rexrab  3651  rexin  4199  rexdifpr  4611  rexdifsn  4745  reusv2lem4  5341  reusv2  5343  frpoind  6294  eldifsucnn  8585  frind  9650  rexuz2  12799  rexrp  12915  rexuz3  15258  infpn2  16827  efgrelexlemb  19664  cmpcov2  23306  cmpfi  23324  txkgen  23568  cubic  26787  madeval2  27795  sumdmdii  32397  extdgfialglem1  33726  bnj882  34959  bnj893  34961  heibor1  37870  eldmqsres  38345  prtlem100  38978  islmodfg  43186  iuneq1i  45206  limcrecl  45753
  Copyright terms: Public domain W3C validator