MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3075
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1849 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3057 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3057 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780  wcel 2111  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-rex 3057
This theorem is referenced by:  rexbiia  3077  rexeqbii  3311  rexrab  3655  rexin  4200  rexdifpr  4612  rexdifsn  4746  reusv2lem4  5339  reusv2  5341  frpoind  6289  eldifsucnn  8579  frind  9640  rexuz2  12794  rexrp  12910  rexuz3  15253  infpn2  16822  efgrelexlemb  19660  cmpcov2  23303  cmpfi  23321  txkgen  23565  cubic  26784  madeval2  27792  sumdmdii  32390  extdgfialglem1  33700  bnj882  34933  bnj893  34935  heibor1  37849  eldmqsres  38320  prtlem100  38897  islmodfg  43101  iuneq1i  45121  limcrecl  45668
  Copyright terms: Public domain W3C validator