MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3078
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1847 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3060 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3060 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1778  wcel 2107  wrex 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-ex 1779  df-rex 3060
This theorem is referenced by:  rexbiia  3080  rexeqbii  3328  rexrab  3684  rexin  4230  rexdifpr  4639  rexdifsn  4774  reusv2lem4  5381  reusv2  5383  frpoind  6342  wfiOLD  6351  eldifsucnn  8684  frind  9772  rexuz2  12923  rexrp  13038  rexuz3  15369  infpn2  16933  efgrelexlemb  19736  cmpcov2  23344  cmpfi  23362  txkgen  23606  cubic  26828  madeval2  27828  sumdmdii  32362  bnj882  34899  bnj893  34901  heibor1  37776  eldmqsres  38247  prtlem100  38819  islmodfg  43044  iuneq1i  45047  limcrecl  45601
  Copyright terms: Public domain W3C validator