| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbii2 | Structured version Visualization version GIF version | ||
| Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexbii2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| rexbii2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 2 | 1 | exbii 1849 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
| 3 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: rexbiia 3078 rexeqbii 3312 rexrab 3651 rexin 4199 rexdifpr 4611 rexdifsn 4745 reusv2lem4 5341 reusv2 5343 frpoind 6294 eldifsucnn 8585 frind 9650 rexuz2 12799 rexrp 12915 rexuz3 15258 infpn2 16827 efgrelexlemb 19664 cmpcov2 23306 cmpfi 23324 txkgen 23568 cubic 26787 madeval2 27795 sumdmdii 32397 extdgfialglem1 33726 bnj882 34959 bnj893 34961 heibor1 37870 eldmqsres 38345 prtlem100 38978 islmodfg 43186 iuneq1i 45206 limcrecl 45753 |
| Copyright terms: Public domain | W3C validator |