![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexbii2 | Structured version Visualization version GIF version |
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
rexbii2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
Ref | Expression |
---|---|
rexbii2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
2 | 1 | exbii 1845 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
3 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-rex 3069 |
This theorem is referenced by: rexbiia 3090 rexeqbii 3343 rexrab 3705 rexin 4256 rexdifpr 4664 rexdifsn 4799 reusv2lem4 5407 reusv2 5409 frpoind 6365 wfiOLD 6374 eldifsucnn 8701 frind 9788 rexuz2 12939 rexrp 13054 rexuz3 15384 infpn2 16947 efgrelexlemb 19783 cmpcov2 23414 cmpfi 23432 txkgen 23676 cubic 26907 madeval2 27907 sumdmdii 32444 bnj882 34919 bnj893 34921 heibor1 37797 eldmqsres 38269 prtlem100 38841 islmodfg 43058 iuneq1i 45025 limcrecl 45585 |
Copyright terms: Public domain | W3C validator |