![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexbii2 | Structured version Visualization version GIF version |
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
rexbii2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
Ref | Expression |
---|---|
rexbii2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
2 | 1 | exbii 1846 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
3 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-rex 3077 |
This theorem is referenced by: rexbiia 3098 rexeqbii 3353 rexrab 3718 rexin 4269 rexdifpr 4681 rexdifsn 4819 reusv2lem4 5419 reusv2 5421 frpoind 6374 wfiOLD 6383 eldifsucnn 8720 frind 9819 rexuz2 12964 rexrp 13078 rexuz3 15397 infpn2 16960 efgrelexlemb 19792 cmpcov2 23419 cmpfi 23437 txkgen 23681 cubic 26910 madeval2 27910 sumdmdii 32447 bnj882 34902 bnj893 34904 heibor1 37770 eldmqsres 38243 prtlem100 38815 islmodfg 43026 iuneq1i 44987 limcrecl 45550 |
Copyright terms: Public domain | W3C validator |