MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3175
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1851 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3069 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3069 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 302 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-rex 3069
This theorem is referenced by:  rexbiia  3176  rexeqbii  3255  rexrab  3626  rexin  4170  rexdifpr  4591  rexdifsn  4724  reusv2lem4  5319  reusv2  5321  frpoind  6230  wfiOLD  6239  frind  9439  rexuz2  12568  rexrp  12680  rexuz3  14988  infpn2  16542  efgrelexlemb  19271  cmpcov2  22449  cmpfi  22467  txkgen  22711  cubic  25904  sumdmdii  30678  bnj882  32806  bnj893  32808  eldifsucnn  33597  madeval2  33964  heibor1  35895  eldmqsres  36348  prtlem100  36800  islmodfg  40810  limcrecl  43060
  Copyright terms: Public domain W3C validator