MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3090
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1850 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3071 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3071 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 302 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1781  wcel 2106  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 206  df-ex 1782  df-rex 3071
This theorem is referenced by:  rexbiia  3092  rexeqbii  3339  rexrab  3692  rexin  4239  rexdifpr  4661  rexdifsn  4797  reusv2lem4  5399  reusv2  5401  frpoind  6343  wfiOLD  6352  eldifsucnn  8665  frind  9747  rexuz2  12887  rexrp  12999  rexuz3  15299  infpn2  16850  efgrelexlemb  19659  cmpcov2  23114  cmpfi  23132  txkgen  23376  cubic  26578  madeval2  27573  sumdmdii  31923  bnj882  34223  bnj893  34225  heibor1  36981  eldmqsres  37458  prtlem100  38032  islmodfg  42113  limcrecl  44644
  Copyright terms: Public domain W3C validator