| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbii2 | Structured version Visualization version GIF version | ||
| Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexbii2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| rexbii2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 2 | 1 | exbii 1849 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
| 3 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: rexbiia 3077 rexeqbii 3311 rexrab 3655 rexin 4200 rexdifpr 4612 rexdifsn 4746 reusv2lem4 5339 reusv2 5341 frpoind 6289 eldifsucnn 8579 frind 9640 rexuz2 12794 rexrp 12910 rexuz3 15253 infpn2 16822 efgrelexlemb 19660 cmpcov2 23303 cmpfi 23321 txkgen 23565 cubic 26784 madeval2 27792 sumdmdii 32390 extdgfialglem1 33700 bnj882 34933 bnj893 34935 heibor1 37849 eldmqsres 38320 prtlem100 38897 islmodfg 43101 iuneq1i 45121 limcrecl 45668 |
| Copyright terms: Public domain | W3C validator |