MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3072
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1848 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3054 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3054 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-rex 3054
This theorem is referenced by:  rexbiia  3074  rexeqbii  3318  rexrab  3667  rexin  4213  rexdifpr  4623  rexdifsn  4758  reusv2lem4  5356  reusv2  5358  frpoind  6315  eldifsucnn  8628  frind  9703  rexuz2  12858  rexrp  12974  rexuz3  15315  infpn2  16884  efgrelexlemb  19680  cmpcov2  23277  cmpfi  23295  txkgen  23539  cubic  26759  madeval2  27761  sumdmdii  32344  bnj882  34916  bnj893  34918  heibor1  37804  eldmqsres  38275  prtlem100  38852  islmodfg  43058  iuneq1i  45079  limcrecl  45627
  Copyright terms: Public domain W3C validator