| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbii2 | Structured version Visualization version GIF version | ||
| Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexbii2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
| Ref | Expression |
|---|---|
| rexbii2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
| 3 | df-rex 3062 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rex 3062 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3062 |
| This theorem is referenced by: rexbiia 3082 rexeqbii 3328 rexrab 3684 rexin 4230 rexdifpr 4640 rexdifsn 4775 reusv2lem4 5376 reusv2 5378 frpoind 6336 wfiOLD 6345 eldifsucnn 8681 frind 9769 rexuz2 12920 rexrp 13035 rexuz3 15372 infpn2 16938 efgrelexlemb 19736 cmpcov2 23333 cmpfi 23351 txkgen 23595 cubic 26816 madeval2 27818 sumdmdii 32401 bnj882 34962 bnj893 34964 heibor1 37839 eldmqsres 38310 prtlem100 38882 islmodfg 43060 iuneq1i 45076 limcrecl 45625 |
| Copyright terms: Public domain | W3C validator |