MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3073
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1848 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3055 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3055 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-rex 3055
This theorem is referenced by:  rexbiia  3075  rexeqbii  3320  rexrab  3670  rexin  4216  rexdifpr  4626  rexdifsn  4761  reusv2lem4  5359  reusv2  5361  frpoind  6318  eldifsucnn  8631  frind  9710  rexuz2  12865  rexrp  12981  rexuz3  15322  infpn2  16891  efgrelexlemb  19687  cmpcov2  23284  cmpfi  23302  txkgen  23546  cubic  26766  madeval2  27768  sumdmdii  32351  bnj882  34923  bnj893  34925  heibor1  37811  eldmqsres  38282  prtlem100  38859  islmodfg  43065  iuneq1i  45086  limcrecl  45634
  Copyright terms: Public domain W3C validator