Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexbii2 | Structured version Visualization version GIF version |
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.) |
Ref | Expression |
---|---|
rexbii2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
Ref | Expression |
---|---|
rexbii2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbii2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
2 | 1 | exbii 1850 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
3 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-rex 3070 |
This theorem is referenced by: rexbiia 3180 rexeqbii 3260 rexrab 3633 rexin 4173 rexdifpr 4594 rexdifsn 4727 reusv2lem4 5324 reusv2 5326 frpoind 6245 wfiOLD 6254 eldifsucnn 8494 frind 9508 rexuz2 12639 rexrp 12751 rexuz3 15060 infpn2 16614 efgrelexlemb 19356 cmpcov2 22541 cmpfi 22559 txkgen 22803 cubic 25999 sumdmdii 30777 bnj882 32906 bnj893 32908 madeval2 34037 heibor1 35968 eldmqsres 36421 prtlem100 36873 islmodfg 40894 limcrecl 43170 |
Copyright terms: Public domain | W3C validator |