MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3080
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1848 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3062 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3062 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-rex 3062
This theorem is referenced by:  rexbiia  3082  rexeqbii  3328  rexrab  3684  rexin  4230  rexdifpr  4640  rexdifsn  4775  reusv2lem4  5376  reusv2  5378  frpoind  6336  wfiOLD  6345  eldifsucnn  8681  frind  9769  rexuz2  12920  rexrp  13035  rexuz3  15372  infpn2  16938  efgrelexlemb  19736  cmpcov2  23333  cmpfi  23351  txkgen  23595  cubic  26816  madeval2  27818  sumdmdii  32401  bnj882  34962  bnj893  34964  heibor1  37839  eldmqsres  38310  prtlem100  38882  islmodfg  43060  iuneq1i  45076  limcrecl  45625
  Copyright terms: Public domain W3C validator