MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3096
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1846 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3077 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3077 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1777  wcel 2108  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-rex 3077
This theorem is referenced by:  rexbiia  3098  rexeqbii  3353  rexrab  3718  rexin  4269  rexdifpr  4681  rexdifsn  4819  reusv2lem4  5419  reusv2  5421  frpoind  6374  wfiOLD  6383  eldifsucnn  8720  frind  9819  rexuz2  12964  rexrp  13078  rexuz3  15397  infpn2  16960  efgrelexlemb  19792  cmpcov2  23419  cmpfi  23437  txkgen  23681  cubic  26910  madeval2  27910  sumdmdii  32447  bnj882  34902  bnj893  34904  heibor1  37770  eldmqsres  38243  prtlem100  38815  islmodfg  43026  iuneq1i  44987  limcrecl  45550
  Copyright terms: Public domain W3C validator