MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbii2 Structured version   Visualization version   GIF version

Theorem rexbii2 3179
Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
rexbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
rexbii2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)

Proof of Theorem rexbii2
StepHypRef Expression
1 rexbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21exbii 1850 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜓))
3 df-rex 3070 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rex 3070 . 2 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 303 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1782  wcel 2106  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-rex 3070
This theorem is referenced by:  rexbiia  3180  rexeqbii  3260  rexrab  3633  rexin  4173  rexdifpr  4594  rexdifsn  4727  reusv2lem4  5324  reusv2  5326  frpoind  6245  wfiOLD  6254  eldifsucnn  8494  frind  9508  rexuz2  12639  rexrp  12751  rexuz3  15060  infpn2  16614  efgrelexlemb  19356  cmpcov2  22541  cmpfi  22559  txkgen  22803  cubic  25999  sumdmdii  30777  bnj882  32906  bnj893  32908  madeval2  34037  heibor1  35968  eldmqsres  36421  prtlem100  36873  islmodfg  40894  limcrecl  43170
  Copyright terms: Public domain W3C validator