| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rspced | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| rspced.1 | ⊢ Ⅎ𝑥𝜒 |
| rspced.2 | ⊢ Ⅎ𝑥𝐴 |
| rspced.3 | ⊢ Ⅎ𝑥𝐵 |
| rspced.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspced.5 | ⊢ (𝜑 → 𝜒) |
| rspced.6 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspced | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspced.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspced.5 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | rspced.1 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 4 | rspced.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | rspced.3 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | rspced.6 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 7 | 3, 4, 5, 6 | rspcef 45010 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜒) → ∃𝑥 ∈ 𝐵 𝜓) |
| 8 | 1, 2, 7 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rex 3060 |
| This theorem is referenced by: rexanuz2nf 45436 |
| Copyright terms: Public domain | W3C validator |