Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspced Structured version   Visualization version   GIF version

Theorem rspced 43862
Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
rspced.1 𝑥𝜒
rspced.2 𝑥𝐴
rspced.3 𝑥𝐵
rspced.4 (𝜑𝐴𝐵)
rspced.5 (𝜑𝜒)
rspced.6 (𝑥 = 𝐴 → (𝜓𝜒))
Assertion
Ref Expression
rspced (𝜑 → ∃𝑥𝐵 𝜓)

Proof of Theorem rspced
StepHypRef Expression
1 rspced.4 . 2 (𝜑𝐴𝐵)
2 rspced.5 . 2 (𝜑𝜒)
3 rspced.1 . . 3 𝑥𝜒
4 rspced.2 . . 3 𝑥𝐴
5 rspced.3 . . 3 𝑥𝐵
6 rspced.6 . . 3 (𝑥 = 𝐴 → (𝜓𝜒))
73, 4, 5, 6rspcef 43759 . 2 ((𝐴𝐵𝜒) → ∃𝑥𝐵 𝜓)
81, 2, 7syl2anc 585 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wnf 1786  wcel 2107  wnfc 2884  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rex 3072  df-v 3477
This theorem is referenced by:  rexanuz2nf  44203
  Copyright terms: Public domain W3C validator