| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqf | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See rexeq 3298 for a version based on fewer axioms. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| raleqf.1 | ⊢ Ⅎ𝑥𝐴 |
| raleqf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| rexeqf | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | raleqf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | raleqf 3332 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝜑)) |
| 4 | ralnex 3057 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
| 5 | ralnex 3057 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐵 𝜑) | |
| 6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐵 𝜑)) |
| 7 | 6 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnfc 2878 ∀wral 3046 ∃wrex 3055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 |
| This theorem is referenced by: rexeqbid 3336 reueq1f 3402 zfrep6 7942 iuneq12daf 32492 indexa 37724 rexeqif 45132 |
| Copyright terms: Public domain | W3C validator |