![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqf | Structured version Visualization version GIF version |
Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See rexeq 3330 for a version based on fewer axioms. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 9-Mar-2025.) |
Ref | Expression |
---|---|
raleqf.1 | ⊢ Ⅎ𝑥𝐴 |
raleqf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
rexeqf | ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | raleqf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | raleqf 3361 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝜑)) |
4 | ralnex 3078 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
5 | ralnex 3078 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐵 𝜑) | |
6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝐴 = 𝐵 → (¬ ∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐵 𝜑)) |
7 | 6 | con4bid 317 | 1 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 Ⅎwnfc 2893 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 |
This theorem is referenced by: rexeqbid 3365 reueq1f 3432 zfrep6 7995 iuneq12daf 32579 indexa 37693 rexeqif 45072 |
Copyright terms: Public domain | W3C validator |