MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqf Structured version   Visualization version   GIF version

Theorem rexeqf 3333
Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See rexeq 3298 for a version based on fewer axioms. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 9-Mar-2025.)
Hypotheses
Ref Expression
raleqf.1 𝑥𝐴
raleqf.2 𝑥𝐵
Assertion
Ref Expression
rexeqf (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))

Proof of Theorem rexeqf
StepHypRef Expression
1 raleqf.1 . . . 4 𝑥𝐴
2 raleqf.2 . . . 4 𝑥𝐵
31, 2raleqf 3332 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑥𝐵 ¬ 𝜑))
4 ralnex 3057 . . 3 (∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴 𝜑)
5 ralnex 3057 . . 3 (∀𝑥𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐵 𝜑)
63, 4, 53bitr3g 313 . 2 (𝐴 = 𝐵 → (¬ ∃𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐵 𝜑))
76con4bid 317 1 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wnfc 2878  wral 3046  wrex 3055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056
This theorem is referenced by:  rexeqbid  3336  reueq1f  3402  zfrep6  7942  iuneq12daf  32492  indexa  37724  rexeqif  45132
  Copyright terms: Public domain W3C validator