Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlim2d Structured version   Visualization version   GIF version

Theorem rexlim2d 43056
Description: Inference removing two restricted quantifiers. Same as rexlimdvv 3221, but with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
rexlim2d.x 𝑥𝜑
rexlim2d.y 𝑦𝜑
rexlim2d.3 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))
Assertion
Ref Expression
rexlim2d (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
Distinct variable groups:   𝑦,𝐴   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem rexlim2d
StepHypRef Expression
1 rexlim2d.x . 2 𝑥𝜑
2 nfv 1918 . 2 𝑥𝜒
3 rexlim2d.y . . . . 5 𝑦𝜑
4 nfv 1918 . . . . 5 𝑦 𝑥𝐴
53, 4nfan 1903 . . . 4 𝑦(𝜑𝑥𝐴)
6 nfv 1918 . . . 4 𝑦𝜒
7 rexlim2d.3 . . . . 5 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))
87expdimp 452 . . . 4 ((𝜑𝑥𝐴) → (𝑦𝐵 → (𝜓𝜒)))
95, 6, 8rexlimd 3245 . . 3 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓𝜒))
109ex 412 . 2 (𝜑 → (𝑥𝐴 → (∃𝑦𝐵 𝜓𝜒)))
111, 2, 10rexlimd 3245 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1787  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-ral 3068  df-rex 3069
This theorem is referenced by:  fourierdlem48  43585
  Copyright terms: Public domain W3C validator