Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlimc Structured version   Visualization version   GIF version

Theorem idlimc 45672
Description: Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
idlimc.a (𝜑𝐴 ⊆ ℂ)
idlimc.f 𝐹 = (𝑥𝐴𝑥)
idlimc.x (𝜑𝑋 ∈ ℂ)
Assertion
Ref Expression
idlimc (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem idlimc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlimc.x . 2 (𝜑𝑋 ∈ ℂ)
2 simpr 484 . . . 4 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐴)
4 idlimc.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝑥)
54fvmpt2 6940 . . . . . . . . . . . . 13 ((𝑥𝐴𝑥𝐴) → (𝐹𝑥) = 𝑥)
63, 3, 5syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝑥)
76fvoveq1d 7368 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
87adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
9 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘(𝑥𝑋)) < 𝑤)
108, 9eqbrtrd 5113 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1110adantrl 716 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1211ex 412 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1312adantlr 715 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1413ralrimiva 3124 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
15 nfcv 2894 . . . . . . . . 9 𝑧𝑥
16 nfcv 2894 . . . . . . . . 9 𝑧𝑋
1715, 16nfne 3029 . . . . . . . 8 𝑧 𝑥𝑋
18 nfv 1915 . . . . . . . 8 𝑧(abs‘(𝑥𝑋)) < 𝑤
1917, 18nfan 1900 . . . . . . 7 𝑧(𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)
20 nfv 1915 . . . . . . 7 𝑧(abs‘((𝐹𝑥) − 𝑋)) < 𝑤
2119, 20nfim 1897 . . . . . 6 𝑧((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
22 nfv 1915 . . . . . . 7 𝑥(𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)
23 nfcv 2894 . . . . . . . . 9 𝑥abs
24 nfmpt1 5190 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑥)
254, 24nfcxfr 2892 . . . . . . . . . . 11 𝑥𝐹
26 nfcv 2894 . . . . . . . . . . 11 𝑥𝑧
2725, 26nffv 6832 . . . . . . . . . 10 𝑥(𝐹𝑧)
28 nfcv 2894 . . . . . . . . . 10 𝑥
29 nfcv 2894 . . . . . . . . . 10 𝑥𝑋
3027, 28, 29nfov 7376 . . . . . . . . 9 𝑥((𝐹𝑧) − 𝑋)
3123, 30nffv 6832 . . . . . . . 8 𝑥(abs‘((𝐹𝑧) − 𝑋))
32 nfcv 2894 . . . . . . . 8 𝑥 <
33 nfcv 2894 . . . . . . . 8 𝑥𝑤
3431, 32, 33nfbr 5138 . . . . . . 7 𝑥(abs‘((𝐹𝑧) − 𝑋)) < 𝑤
3522, 34nfim 1897 . . . . . 6 𝑥((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)
36 neeq1 2990 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑋𝑧𝑋))
37 fvoveq1 7369 . . . . . . . . 9 (𝑥 = 𝑧 → (abs‘(𝑥𝑋)) = (abs‘(𝑧𝑋)))
3837breq1d 5101 . . . . . . . 8 (𝑥 = 𝑧 → ((abs‘(𝑥𝑋)) < 𝑤 ↔ (abs‘(𝑧𝑋)) < 𝑤))
3936, 38anbi12d 632 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) ↔ (𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)))
4039imbrov2fvoveq 7371 . . . . . 6 (𝑥 = 𝑧 → (((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)))
4121, 35, 40cbvralw 3274 . . . . 5 (∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4214, 41sylib 218 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
43 brimralrspcev 5152 . . . 4 ((𝑤 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
442, 42, 43syl2anc 584 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4544ralrimiva 3124 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
46 idlimc.a . . . . 5 (𝜑𝐴 ⊆ ℂ)
4746sselda 3934 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
4847, 4fmptd 7047 . . 3 (𝜑𝐹:𝐴⟶ℂ)
4948, 46, 1ellimc3 25808 . 2 (𝜑 → (𝑋 ∈ (𝐹 lim 𝑋) ↔ (𝑋 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))))
501, 45, 49mpbir2and 713 1 (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  cc 11004   < clt 11146  cmin 11344  +crp 12890  abscabs 15141   lim climc 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cnp 23144  df-xms 24236  df-ms 24237  df-limc 25795
This theorem is referenced by:  fourierdlem53  46203  fourierdlem60  46210  fourierdlem61  46211  fourierdlem73  46223  fourierdlem74  46224  fourierdlem75  46225  fourierdlem76  46226
  Copyright terms: Public domain W3C validator