Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlimc Structured version   Visualization version   GIF version

Theorem idlimc 43857
Description: Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
idlimc.a (𝜑𝐴 ⊆ ℂ)
idlimc.f 𝐹 = (𝑥𝐴𝑥)
idlimc.x (𝜑𝑋 ∈ ℂ)
Assertion
Ref Expression
idlimc (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem idlimc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlimc.x . 2 (𝜑𝑋 ∈ ℂ)
2 simpr 485 . . . 4 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐴)
4 idlimc.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝑥)
54fvmpt2 6959 . . . . . . . . . . . . 13 ((𝑥𝐴𝑥𝐴) → (𝐹𝑥) = 𝑥)
63, 3, 5syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝑥)
76fvoveq1d 7379 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
87adantr 481 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
9 simpr 485 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘(𝑥𝑋)) < 𝑤)
108, 9eqbrtrd 5127 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1110adantrl 714 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1211ex 413 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1312adantlr 713 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1413ralrimiva 3143 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
15 nfcv 2907 . . . . . . . . 9 𝑧𝑥
16 nfcv 2907 . . . . . . . . 9 𝑧𝑋
1715, 16nfne 3045 . . . . . . . 8 𝑧 𝑥𝑋
18 nfv 1917 . . . . . . . 8 𝑧(abs‘(𝑥𝑋)) < 𝑤
1917, 18nfan 1902 . . . . . . 7 𝑧(𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)
20 nfv 1917 . . . . . . 7 𝑧(abs‘((𝐹𝑥) − 𝑋)) < 𝑤
2119, 20nfim 1899 . . . . . 6 𝑧((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
22 nfv 1917 . . . . . . 7 𝑥(𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)
23 nfcv 2907 . . . . . . . . 9 𝑥abs
24 nfmpt1 5213 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑥)
254, 24nfcxfr 2905 . . . . . . . . . . 11 𝑥𝐹
26 nfcv 2907 . . . . . . . . . . 11 𝑥𝑧
2725, 26nffv 6852 . . . . . . . . . 10 𝑥(𝐹𝑧)
28 nfcv 2907 . . . . . . . . . 10 𝑥
29 nfcv 2907 . . . . . . . . . 10 𝑥𝑋
3027, 28, 29nfov 7387 . . . . . . . . 9 𝑥((𝐹𝑧) − 𝑋)
3123, 30nffv 6852 . . . . . . . 8 𝑥(abs‘((𝐹𝑧) − 𝑋))
32 nfcv 2907 . . . . . . . 8 𝑥 <
33 nfcv 2907 . . . . . . . 8 𝑥𝑤
3431, 32, 33nfbr 5152 . . . . . . 7 𝑥(abs‘((𝐹𝑧) − 𝑋)) < 𝑤
3522, 34nfim 1899 . . . . . 6 𝑥((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)
36 neeq1 3006 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑋𝑧𝑋))
37 fvoveq1 7380 . . . . . . . . 9 (𝑥 = 𝑧 → (abs‘(𝑥𝑋)) = (abs‘(𝑧𝑋)))
3837breq1d 5115 . . . . . . . 8 (𝑥 = 𝑧 → ((abs‘(𝑥𝑋)) < 𝑤 ↔ (abs‘(𝑧𝑋)) < 𝑤))
3936, 38anbi12d 631 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) ↔ (𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)))
4039imbrov2fvoveq 7382 . . . . . 6 (𝑥 = 𝑧 → (((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)))
4121, 35, 40cbvralw 3289 . . . . 5 (∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4214, 41sylib 217 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
43 brimralrspcev 5166 . . . 4 ((𝑤 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
442, 42, 43syl2anc 584 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4544ralrimiva 3143 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
46 idlimc.a . . . . 5 (𝜑𝐴 ⊆ ℂ)
4746sselda 3944 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
4847, 4fmptd 7062 . . 3 (𝜑𝐹:𝐴⟶ℂ)
4948, 46, 1ellimc3 25243 . 2 (𝜑 → (𝑋 ∈ (𝐹 lim 𝑋) ↔ (𝑋 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))))
501, 45, 49mpbir2and 711 1 (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049   < clt 11189  cmin 11385  +crp 12915  abscabs 15119   lim climc 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cnp 22579  df-xms 23673  df-ms 23674  df-limc 25230
This theorem is referenced by:  fourierdlem53  44390  fourierdlem60  44397  fourierdlem61  44398  fourierdlem73  44410  fourierdlem74  44411  fourierdlem75  44412  fourierdlem76  44413
  Copyright terms: Public domain W3C validator