Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlimc Structured version   Visualization version   GIF version

Theorem idlimc 45597
Description: Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
idlimc.a (𝜑𝐴 ⊆ ℂ)
idlimc.f 𝐹 = (𝑥𝐴𝑥)
idlimc.x (𝜑𝑋 ∈ ℂ)
Assertion
Ref Expression
idlimc (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem idlimc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlimc.x . 2 (𝜑𝑋 ∈ ℂ)
2 simpr 484 . . . 4 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐴)
4 idlimc.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝑥)
54fvmpt2 6961 . . . . . . . . . . . . 13 ((𝑥𝐴𝑥𝐴) → (𝐹𝑥) = 𝑥)
63, 3, 5syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝑥)
76fvoveq1d 7391 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
87adantr 480 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
9 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘(𝑥𝑋)) < 𝑤)
108, 9eqbrtrd 5124 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1110adantrl 716 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1211ex 412 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1312adantlr 715 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1413ralrimiva 3125 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
15 nfcv 2891 . . . . . . . . 9 𝑧𝑥
16 nfcv 2891 . . . . . . . . 9 𝑧𝑋
1715, 16nfne 3026 . . . . . . . 8 𝑧 𝑥𝑋
18 nfv 1914 . . . . . . . 8 𝑧(abs‘(𝑥𝑋)) < 𝑤
1917, 18nfan 1899 . . . . . . 7 𝑧(𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)
20 nfv 1914 . . . . . . 7 𝑧(abs‘((𝐹𝑥) − 𝑋)) < 𝑤
2119, 20nfim 1896 . . . . . 6 𝑧((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
22 nfv 1914 . . . . . . 7 𝑥(𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)
23 nfcv 2891 . . . . . . . . 9 𝑥abs
24 nfmpt1 5201 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑥)
254, 24nfcxfr 2889 . . . . . . . . . . 11 𝑥𝐹
26 nfcv 2891 . . . . . . . . . . 11 𝑥𝑧
2725, 26nffv 6850 . . . . . . . . . 10 𝑥(𝐹𝑧)
28 nfcv 2891 . . . . . . . . . 10 𝑥
29 nfcv 2891 . . . . . . . . . 10 𝑥𝑋
3027, 28, 29nfov 7399 . . . . . . . . 9 𝑥((𝐹𝑧) − 𝑋)
3123, 30nffv 6850 . . . . . . . 8 𝑥(abs‘((𝐹𝑧) − 𝑋))
32 nfcv 2891 . . . . . . . 8 𝑥 <
33 nfcv 2891 . . . . . . . 8 𝑥𝑤
3431, 32, 33nfbr 5149 . . . . . . 7 𝑥(abs‘((𝐹𝑧) − 𝑋)) < 𝑤
3522, 34nfim 1896 . . . . . 6 𝑥((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)
36 neeq1 2987 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑋𝑧𝑋))
37 fvoveq1 7392 . . . . . . . . 9 (𝑥 = 𝑧 → (abs‘(𝑥𝑋)) = (abs‘(𝑧𝑋)))
3837breq1d 5112 . . . . . . . 8 (𝑥 = 𝑧 → ((abs‘(𝑥𝑋)) < 𝑤 ↔ (abs‘(𝑧𝑋)) < 𝑤))
3936, 38anbi12d 632 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) ↔ (𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)))
4039imbrov2fvoveq 7394 . . . . . 6 (𝑥 = 𝑧 → (((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)))
4121, 35, 40cbvralw 3278 . . . . 5 (∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4214, 41sylib 218 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
43 brimralrspcev 5163 . . . 4 ((𝑤 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
442, 42, 43syl2anc 584 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4544ralrimiva 3125 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
46 idlimc.a . . . . 5 (𝜑𝐴 ⊆ ℂ)
4746sselda 3943 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
4847, 4fmptd 7068 . . 3 (𝜑𝐹:𝐴⟶ℂ)
4948, 46, 1ellimc3 25756 . 2 (𝜑 → (𝑋 ∈ (𝐹 lim 𝑋) ↔ (𝑋 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))))
501, 45, 49mpbir2and 713 1 (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042   < clt 11184  cmin 11381  +crp 12927  abscabs 15176   lim climc 25739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cnp 23091  df-xms 24184  df-ms 24185  df-limc 25743
This theorem is referenced by:  fourierdlem53  46130  fourierdlem60  46137  fourierdlem61  46138  fourierdlem73  46150  fourierdlem74  46151  fourierdlem75  46152  fourierdlem76  46153
  Copyright terms: Public domain W3C validator