Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlimc Structured version   Visualization version   GIF version

Theorem idlimc 40376
Description: Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
idlimc.a (𝜑𝐴 ⊆ ℂ)
idlimc.f 𝐹 = (𝑥𝐴𝑥)
idlimc.x (𝜑𝑋 ∈ ℂ)
Assertion
Ref Expression
idlimc (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem idlimc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlimc.x . 2 (𝜑𝑋 ∈ ℂ)
2 simpr 471 . . . 4 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3 simpr 471 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐴)
4 idlimc.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝑥)
54fvmpt2 6433 . . . . . . . . . . . . 13 ((𝑥𝐴𝑥𝐴) → (𝐹𝑥) = 𝑥)
63, 3, 5syl2anc 573 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝑥)
76fvoveq1d 6815 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
87adantr 466 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
9 simpr 471 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘(𝑥𝑋)) < 𝑤)
108, 9eqbrtrd 4808 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1110adantrl 695 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1211ex 397 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1312adantlr 694 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1413ralrimiva 3115 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
15 nfcv 2913 . . . . . . . . 9 𝑧𝑥
16 nfcv 2913 . . . . . . . . 9 𝑧𝑋
1715, 16nfne 3043 . . . . . . . 8 𝑧 𝑥𝑋
18 nfv 1995 . . . . . . . 8 𝑧(abs‘(𝑥𝑋)) < 𝑤
1917, 18nfan 1980 . . . . . . 7 𝑧(𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)
20 nfv 1995 . . . . . . 7 𝑧(abs‘((𝐹𝑥) − 𝑋)) < 𝑤
2119, 20nfim 1977 . . . . . 6 𝑧((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
22 nfv 1995 . . . . . . 7 𝑥(𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)
23 nfcv 2913 . . . . . . . . 9 𝑥abs
24 nfmpt1 4881 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑥)
254, 24nfcxfr 2911 . . . . . . . . . . 11 𝑥𝐹
26 nfcv 2913 . . . . . . . . . . 11 𝑥𝑧
2725, 26nffv 6339 . . . . . . . . . 10 𝑥(𝐹𝑧)
28 nfcv 2913 . . . . . . . . . 10 𝑥
29 nfcv 2913 . . . . . . . . . 10 𝑥𝑋
3027, 28, 29nfov 6821 . . . . . . . . 9 𝑥((𝐹𝑧) − 𝑋)
3123, 30nffv 6339 . . . . . . . 8 𝑥(abs‘((𝐹𝑧) − 𝑋))
32 nfcv 2913 . . . . . . . 8 𝑥 <
33 nfcv 2913 . . . . . . . 8 𝑥𝑤
3431, 32, 33nfbr 4833 . . . . . . 7 𝑥(abs‘((𝐹𝑧) − 𝑋)) < 𝑤
3522, 34nfim 1977 . . . . . 6 𝑥((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)
36 neeq1 3005 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑋𝑧𝑋))
37 fvoveq1 6816 . . . . . . . . 9 (𝑥 = 𝑧 → (abs‘(𝑥𝑋)) = (abs‘(𝑧𝑋)))
3837breq1d 4796 . . . . . . . 8 (𝑥 = 𝑧 → ((abs‘(𝑥𝑋)) < 𝑤 ↔ (abs‘(𝑧𝑋)) < 𝑤))
3936, 38anbi12d 616 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) ↔ (𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)))
40 fveq2 6332 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
4140fvoveq1d 6815 . . . . . . . 8 (𝑥 = 𝑧 → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘((𝐹𝑧) − 𝑋)))
4241breq1d 4796 . . . . . . 7 (𝑥 = 𝑧 → ((abs‘((𝐹𝑥) − 𝑋)) < 𝑤 ↔ (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4339, 42imbi12d 333 . . . . . 6 (𝑥 = 𝑧 → (((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)))
4421, 35, 43cbvral 3316 . . . . 5 (∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4514, 44sylib 208 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
46 breq2 4790 . . . . . . . 8 (𝑦 = 𝑤 → ((abs‘(𝑧𝑋)) < 𝑦 ↔ (abs‘(𝑧𝑋)) < 𝑤))
4746anbi2d 614 . . . . . . 7 (𝑦 = 𝑤 → ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) ↔ (𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)))
4847imbi1d 330 . . . . . 6 (𝑦 = 𝑤 → (((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤) ↔ ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)))
4948ralbidv 3135 . . . . 5 (𝑦 = 𝑤 → (∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤) ↔ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)))
5049rspcev 3460 . . . 4 ((𝑤 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
512, 45, 50syl2anc 573 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
5251ralrimiva 3115 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
53 idlimc.a . . . . 5 (𝜑𝐴 ⊆ ℂ)
5453sselda 3752 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
5554, 4fmptd 6527 . . 3 (𝜑𝐹:𝐴⟶ℂ)
5655, 53, 1ellimc3 23863 . 2 (𝜑 → (𝑋 ∈ (𝐹 lim 𝑋) ↔ (𝑋 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))))
571, 52, 56mpbir2and 692 1 (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  wss 3723   class class class wbr 4786  cmpt 4863  cfv 6031  (class class class)co 6793  cc 10136   < clt 10276  cmin 10468  +crp 12035  abscabs 14182   lim climc 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-rest 16291  df-topn 16292  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cnp 21253  df-xms 22345  df-ms 22346  df-limc 23850
This theorem is referenced by:  fourierdlem53  40893  fourierdlem60  40900  fourierdlem61  40901  fourierdlem73  40913  fourierdlem74  40914  fourierdlem75  40915  fourierdlem76  40916
  Copyright terms: Public domain W3C validator