Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlimc Structured version   Visualization version   GIF version

Theorem idlimc 45043
Description: Limit of the identity function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
idlimc.a (𝜑𝐴 ⊆ ℂ)
idlimc.f 𝐹 = (𝑥𝐴𝑥)
idlimc.x (𝜑𝑋 ∈ ℂ)
Assertion
Ref Expression
idlimc (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem idlimc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlimc.x . 2 (𝜑𝑋 ∈ ℂ)
2 simpr 483 . . . 4 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝑥𝐴)
4 idlimc.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝑥)
54fvmpt2 7021 . . . . . . . . . . . . 13 ((𝑥𝐴𝑥𝐴) → (𝐹𝑥) = 𝑥)
63, 3, 5syl2anc 582 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝑥)
76fvoveq1d 7448 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
87adantr 479 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) = (abs‘(𝑥𝑋)))
9 simpr 483 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘(𝑥𝑋)) < 𝑤)
108, 9eqbrtrd 5174 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1110adantrl 714 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
1211ex 411 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1312adantlr 713 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
1413ralrimiva 3143 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤))
15 nfcv 2899 . . . . . . . . 9 𝑧𝑥
16 nfcv 2899 . . . . . . . . 9 𝑧𝑋
1715, 16nfne 3040 . . . . . . . 8 𝑧 𝑥𝑋
18 nfv 1909 . . . . . . . 8 𝑧(abs‘(𝑥𝑋)) < 𝑤
1917, 18nfan 1894 . . . . . . 7 𝑧(𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤)
20 nfv 1909 . . . . . . 7 𝑧(abs‘((𝐹𝑥) − 𝑋)) < 𝑤
2119, 20nfim 1891 . . . . . 6 𝑧((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤)
22 nfv 1909 . . . . . . 7 𝑥(𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)
23 nfcv 2899 . . . . . . . . 9 𝑥abs
24 nfmpt1 5260 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑥)
254, 24nfcxfr 2897 . . . . . . . . . . 11 𝑥𝐹
26 nfcv 2899 . . . . . . . . . . 11 𝑥𝑧
2725, 26nffv 6912 . . . . . . . . . 10 𝑥(𝐹𝑧)
28 nfcv 2899 . . . . . . . . . 10 𝑥
29 nfcv 2899 . . . . . . . . . 10 𝑥𝑋
3027, 28, 29nfov 7456 . . . . . . . . 9 𝑥((𝐹𝑧) − 𝑋)
3123, 30nffv 6912 . . . . . . . 8 𝑥(abs‘((𝐹𝑧) − 𝑋))
32 nfcv 2899 . . . . . . . 8 𝑥 <
33 nfcv 2899 . . . . . . . 8 𝑥𝑤
3431, 32, 33nfbr 5199 . . . . . . 7 𝑥(abs‘((𝐹𝑧) − 𝑋)) < 𝑤
3522, 34nfim 1891 . . . . . 6 𝑥((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)
36 neeq1 3000 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝑋𝑧𝑋))
37 fvoveq1 7449 . . . . . . . . 9 (𝑥 = 𝑧 → (abs‘(𝑥𝑋)) = (abs‘(𝑧𝑋)))
3837breq1d 5162 . . . . . . . 8 (𝑥 = 𝑧 → ((abs‘(𝑥𝑋)) < 𝑤 ↔ (abs‘(𝑧𝑋)) < 𝑤))
3936, 38anbi12d 630 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) ↔ (𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤)))
4039imbrov2fvoveq 7451 . . . . . 6 (𝑥 = 𝑧 → (((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)))
4121, 35, 40cbvralw 3301 . . . . 5 (∀𝑥𝐴 ((𝑥𝑋 ∧ (abs‘(𝑥𝑋)) < 𝑤) → (abs‘((𝐹𝑥) − 𝑋)) < 𝑤) ↔ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4214, 41sylib 217 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
43 brimralrspcev 5213 . . . 4 ((𝑤 ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑤) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
442, 42, 43syl2anc 582 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
4544ralrimiva 3143 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))
46 idlimc.a . . . . 5 (𝜑𝐴 ⊆ ℂ)
4746sselda 3982 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
4847, 4fmptd 7129 . . 3 (𝜑𝐹:𝐴⟶ℂ)
4948, 46, 1ellimc3 25828 . 2 (𝜑 → (𝑋 ∈ (𝐹 lim 𝑋) ↔ (𝑋 ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝑋 ∧ (abs‘(𝑧𝑋)) < 𝑦) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑤))))
501, 45, 49mpbir2and 711 1 (𝜑𝑋 ∈ (𝐹 lim 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2937  wral 3058  wrex 3067  wss 3949   class class class wbr 5152  cmpt 5235  cfv 6553  (class class class)co 7426  cc 11144   < clt 11286  cmin 11482  +crp 13014  abscabs 15221   lim climc 25811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fi 9442  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-fz 13525  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-starv 17255  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-rest 17411  df-topn 17412  df-topgen 17432  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cnp 23152  df-xms 24246  df-ms 24247  df-limc 25815
This theorem is referenced by:  fourierdlem53  45576  fourierdlem60  45583  fourierdlem61  45584  fourierdlem73  45596  fourierdlem74  45597  fourierdlem75  45598  fourierdlem76  45599
  Copyright terms: Public domain W3C validator