![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > constlimc | Structured version Visualization version GIF version |
Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
constlimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
constlimc.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
constlimc.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
constlimc.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
constlimc | ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | constlimc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | 1rp 12116 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
3 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 1 ∈ ℝ+) |
4 | simpr 479 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ 𝐴) | |
5 | vex 3417 | . . . . . . . . . . . . . . . 16 ⊢ 𝑣 ∈ V | |
6 | nfcv 2969 | . . . . . . . . . . . . . . . 16 ⊢ Ⅎ𝑥𝐵 | |
7 | csbtt 3768 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑣 ∈ V ∧ Ⅎ𝑥𝐵) → ⦋𝑣 / 𝑥⦌𝐵 = 𝐵) | |
8 | 5, 6, 7 | mp2an 685 | . . . . . . . . . . . . . . 15 ⊢ ⦋𝑣 / 𝑥⦌𝐵 = 𝐵 |
9 | 8, 1 | syl5eqel 2910 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) |
10 | 9 | adantr 474 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) |
11 | constlimc.f | . . . . . . . . . . . . . 14 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
12 | 11 | fvmpts 6532 | . . . . . . . . . . . . 13 ⊢ ((𝑣 ∈ 𝐴 ∧ ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) → (𝐹‘𝑣) = ⦋𝑣 / 𝑥⦌𝐵) |
13 | 4, 10, 12 | syl2anc 581 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) = ⦋𝑣 / 𝑥⦌𝐵) |
14 | 13 | oveq1d 6920 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐹‘𝑣) − 𝐵) = (⦋𝑣 / 𝑥⦌𝐵 − 𝐵)) |
15 | 8 | oveq1i 6915 | . . . . . . . . . . 11 ⊢ (⦋𝑣 / 𝑥⦌𝐵 − 𝐵) = (𝐵 − 𝐵) |
16 | 14, 15 | syl6eq 2877 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐹‘𝑣) − 𝐵) = (𝐵 − 𝐵)) |
17 | 16 | fveq2d 6437 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = (abs‘(𝐵 − 𝐵))) |
18 | 1 | subidd 10701 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
19 | 18 | fveq2d 6437 | . . . . . . . . . 10 ⊢ (𝜑 → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
20 | 19 | adantr 474 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
21 | abs0 14402 | . . . . . . . . . 10 ⊢ (abs‘0) = 0 | |
22 | 21 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘0) = 0) |
23 | 17, 20, 22 | 3eqtrd 2865 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = 0) |
24 | 23 | adantlr 708 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = 0) |
25 | rpgt0 12126 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
26 | 25 | ad2antlr 720 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → 0 < 𝑦) |
27 | 24, 26 | eqbrtrd 4895 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦) |
28 | 27 | a1d 25 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
29 | 28 | ralrimiva 3175 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
30 | brimralrspcev 4934 | . . . 4 ⊢ ((1 ∈ ℝ+ ∧ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) | |
31 | 3, 29, 30 | syl2anc 581 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
32 | 31 | ralrimiva 3175 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
33 | 1 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
34 | 33, 11 | fmptd 6633 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
35 | constlimc.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
36 | constlimc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
37 | 34, 35, 36 | ellimc3 24042 | . 2 ⊢ (𝜑 → (𝐵 ∈ (𝐹 limℂ 𝐶) ↔ (𝐵 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)))) |
38 | 1, 32, 37 | mpbir2and 706 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 Ⅎwnfc 2956 ≠ wne 2999 ∀wral 3117 ∃wrex 3118 Vcvv 3414 ⦋csb 3757 ⊆ wss 3798 class class class wbr 4873 ↦ cmpt 4952 ‘cfv 6123 (class class class)co 6905 ℂcc 10250 0cc0 10252 1c1 10253 < clt 10391 − cmin 10585 ℝ+crp 12112 abscabs 14351 limℂ climc 24025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fi 8586 df-sup 8617 df-inf 8618 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-7 11419 df-8 11420 df-9 11421 df-n0 11619 df-z 11705 df-dec 11822 df-uz 11969 df-q 12072 df-rp 12113 df-xneg 12232 df-xadd 12233 df-xmul 12234 df-fz 12620 df-seq 13096 df-exp 13155 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-plusg 16318 df-mulr 16319 df-starv 16320 df-tset 16324 df-ple 16325 df-ds 16327 df-unif 16328 df-rest 16436 df-topn 16437 df-topgen 16457 df-psmet 20098 df-xmet 20099 df-met 20100 df-bl 20101 df-mopn 20102 df-cnfld 20107 df-top 21069 df-topon 21086 df-topsp 21108 df-bases 21121 df-cnp 21403 df-xms 22495 df-ms 22496 df-limc 24029 |
This theorem is referenced by: reclimc 40680 fourierdlem53 41170 fourierdlem60 41177 fourierdlem61 41178 fourierdlem73 41190 fourierdlem74 41191 fourierdlem75 41192 fourierdlem76 41193 fouriersw 41242 |
Copyright terms: Public domain | W3C validator |