Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constlimc Structured version   Visualization version   GIF version

Theorem constlimc 45748
Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
constlimc.f 𝐹 = (𝑥𝐴𝐵)
constlimc.a (𝜑𝐴 ⊆ ℂ)
constlimc.b (𝜑𝐵 ∈ ℂ)
constlimc.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
constlimc (𝜑𝐵 ∈ (𝐹 lim 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem constlimc
Dummy variables 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constlimc.b . 2 (𝜑𝐵 ∈ ℂ)
2 1rp 12896 . . . . 5 1 ∈ ℝ+
32a1i 11 . . . 4 ((𝜑𝑦 ∈ ℝ+) → 1 ∈ ℝ+)
4 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → 𝑣𝐴)
5 vex 3441 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
6 nfcv 2895 . . . . . . . . . . . . . . . 16 𝑥𝐵
7 csbtt 3863 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ V ∧ 𝑥𝐵) → 𝑣 / 𝑥𝐵 = 𝐵)
85, 6, 7mp2an 692 . . . . . . . . . . . . . . 15 𝑣 / 𝑥𝐵 = 𝐵
98, 1eqeltrid 2837 . . . . . . . . . . . . . 14 (𝜑𝑣 / 𝑥𝐵 ∈ ℂ)
109adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → 𝑣 / 𝑥𝐵 ∈ ℂ)
11 constlimc.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝐵)
1211fvmpts 6938 . . . . . . . . . . . . 13 ((𝑣𝐴𝑣 / 𝑥𝐵 ∈ ℂ) → (𝐹𝑣) = 𝑣 / 𝑥𝐵)
134, 10, 12syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → (𝐹𝑣) = 𝑣 / 𝑥𝐵)
1413oveq1d 7367 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → ((𝐹𝑣) − 𝐵) = (𝑣 / 𝑥𝐵𝐵))
158oveq1i 7362 . . . . . . . . . . 11 (𝑣 / 𝑥𝐵𝐵) = (𝐵𝐵)
1614, 15eqtrdi 2784 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((𝐹𝑣) − 𝐵) = (𝐵𝐵))
1716fveq2d 6832 . . . . . . . . 9 ((𝜑𝑣𝐴) → (abs‘((𝐹𝑣) − 𝐵)) = (abs‘(𝐵𝐵)))
181subidd 11467 . . . . . . . . . . 11 (𝜑 → (𝐵𝐵) = 0)
1918fveq2d 6832 . . . . . . . . . 10 (𝜑 → (abs‘(𝐵𝐵)) = (abs‘0))
2019adantr 480 . . . . . . . . 9 ((𝜑𝑣𝐴) → (abs‘(𝐵𝐵)) = (abs‘0))
21 abs0 15194 . . . . . . . . . 10 (abs‘0) = 0
2221a1i 11 . . . . . . . . 9 ((𝜑𝑣𝐴) → (abs‘0) = 0)
2317, 20, 223eqtrd 2772 . . . . . . . 8 ((𝜑𝑣𝐴) → (abs‘((𝐹𝑣) − 𝐵)) = 0)
2423adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑣𝐴) → (abs‘((𝐹𝑣) − 𝐵)) = 0)
25 rpgt0 12905 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < 𝑦)
2625ad2antlr 727 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑣𝐴) → 0 < 𝑦)
2724, 26eqbrtrd 5115 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑣𝐴) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦)
2827a1d 25 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑣𝐴) → ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 1) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
2928ralrimiva 3125 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∀𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 1) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
30 brimralrspcev 5154 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 1) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦)) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
313, 29, 30syl2anc 584 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
3231ralrimiva 3125 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))
331adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3433, 11fmptd 7053 . . 3 (𝜑𝐹:𝐴⟶ℂ)
35 constlimc.a . . 3 (𝜑𝐴 ⊆ ℂ)
36 constlimc.c . . 3 (𝜑𝐶 ∈ ℂ)
3734, 35, 36ellimc3 25808 . 2 (𝜑 → (𝐵 ∈ (𝐹 lim 𝐶) ↔ (𝐵 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐶 ∧ (abs‘(𝑣𝐶)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐵)) < 𝑦))))
381, 32, 37mpbir2and 713 1 (𝜑𝐵 ∈ (𝐹 lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wnfc 2880  wne 2929  wral 3048  wrex 3057  Vcvv 3437  csb 3846  wss 3898   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   < clt 11153  cmin 11351  +crp 12892  abscabs 15143   lim climc 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-rest 17328  df-topn 17329  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cnp 23144  df-xms 24236  df-ms 24237  df-limc 25795
This theorem is referenced by:  reclimc  45775  fourierdlem53  46281  fourierdlem60  46288  fourierdlem61  46289  fourierdlem73  46301  fourierdlem74  46302  fourierdlem75  46303  fourierdlem76  46304  fouriersw  46353
  Copyright terms: Public domain W3C validator