| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constlimc | Structured version Visualization version GIF version | ||
| Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| constlimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| constlimc.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| constlimc.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| constlimc.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| constlimc | ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constlimc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 2 | 1rp 12896 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 1 ∈ ℝ+) |
| 4 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ 𝐴) | |
| 5 | vex 3441 | . . . . . . . . . . . . . . . 16 ⊢ 𝑣 ∈ V | |
| 6 | nfcv 2895 | . . . . . . . . . . . . . . . 16 ⊢ Ⅎ𝑥𝐵 | |
| 7 | csbtt 3863 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑣 ∈ V ∧ Ⅎ𝑥𝐵) → ⦋𝑣 / 𝑥⦌𝐵 = 𝐵) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . . . . . . . . . 15 ⊢ ⦋𝑣 / 𝑥⦌𝐵 = 𝐵 |
| 9 | 8, 1 | eqeltrid 2837 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) |
| 10 | 9 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) |
| 11 | constlimc.f | . . . . . . . . . . . . . 14 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 12 | 11 | fvmpts 6938 | . . . . . . . . . . . . 13 ⊢ ((𝑣 ∈ 𝐴 ∧ ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) → (𝐹‘𝑣) = ⦋𝑣 / 𝑥⦌𝐵) |
| 13 | 4, 10, 12 | syl2anc 584 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) = ⦋𝑣 / 𝑥⦌𝐵) |
| 14 | 13 | oveq1d 7367 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐹‘𝑣) − 𝐵) = (⦋𝑣 / 𝑥⦌𝐵 − 𝐵)) |
| 15 | 8 | oveq1i 7362 | . . . . . . . . . . 11 ⊢ (⦋𝑣 / 𝑥⦌𝐵 − 𝐵) = (𝐵 − 𝐵) |
| 16 | 14, 15 | eqtrdi 2784 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐹‘𝑣) − 𝐵) = (𝐵 − 𝐵)) |
| 17 | 16 | fveq2d 6832 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = (abs‘(𝐵 − 𝐵))) |
| 18 | 1 | subidd 11467 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
| 19 | 18 | fveq2d 6832 | . . . . . . . . . 10 ⊢ (𝜑 → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
| 20 | 19 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
| 21 | abs0 15194 | . . . . . . . . . 10 ⊢ (abs‘0) = 0 | |
| 22 | 21 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘0) = 0) |
| 23 | 17, 20, 22 | 3eqtrd 2772 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = 0) |
| 24 | 23 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = 0) |
| 25 | rpgt0 12905 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
| 26 | 25 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → 0 < 𝑦) |
| 27 | 24, 26 | eqbrtrd 5115 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦) |
| 28 | 27 | a1d 25 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
| 29 | 28 | ralrimiva 3125 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
| 30 | brimralrspcev 5154 | . . . 4 ⊢ ((1 ∈ ℝ+ ∧ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) | |
| 31 | 3, 29, 30 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
| 32 | 31 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
| 33 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 34 | 33, 11 | fmptd 7053 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 35 | constlimc.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 36 | constlimc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 37 | 34, 35, 36 | ellimc3 25808 | . 2 ⊢ (𝜑 → (𝐵 ∈ (𝐹 limℂ 𝐶) ↔ (𝐵 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)))) |
| 38 | 1, 32, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ⦋csb 3846 ⊆ wss 3898 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 0cc0 11013 1c1 11014 < clt 11153 − cmin 11351 ℝ+crp 12892 abscabs 15143 limℂ climc 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-rest 17328 df-topn 17329 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cnp 23144 df-xms 24236 df-ms 24237 df-limc 25795 |
| This theorem is referenced by: reclimc 45775 fourierdlem53 46281 fourierdlem60 46288 fourierdlem61 46289 fourierdlem73 46301 fourierdlem74 46302 fourierdlem75 46303 fourierdlem76 46304 fouriersw 46353 |
| Copyright terms: Public domain | W3C validator |