| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constlimc | Structured version Visualization version GIF version | ||
| Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| constlimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| constlimc.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| constlimc.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| constlimc.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| constlimc | ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constlimc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 2 | 1rp 13012 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 1 ∈ ℝ+) |
| 4 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ 𝐴) | |
| 5 | vex 3463 | . . . . . . . . . . . . . . . 16 ⊢ 𝑣 ∈ V | |
| 6 | nfcv 2898 | . . . . . . . . . . . . . . . 16 ⊢ Ⅎ𝑥𝐵 | |
| 7 | csbtt 3891 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑣 ∈ V ∧ Ⅎ𝑥𝐵) → ⦋𝑣 / 𝑥⦌𝐵 = 𝐵) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . . . . . . . . . 15 ⊢ ⦋𝑣 / 𝑥⦌𝐵 = 𝐵 |
| 9 | 8, 1 | eqeltrid 2838 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) |
| 10 | 9 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) |
| 11 | constlimc.f | . . . . . . . . . . . . . 14 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 12 | 11 | fvmpts 6989 | . . . . . . . . . . . . 13 ⊢ ((𝑣 ∈ 𝐴 ∧ ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) → (𝐹‘𝑣) = ⦋𝑣 / 𝑥⦌𝐵) |
| 13 | 4, 10, 12 | syl2anc 584 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) = ⦋𝑣 / 𝑥⦌𝐵) |
| 14 | 13 | oveq1d 7420 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐹‘𝑣) − 𝐵) = (⦋𝑣 / 𝑥⦌𝐵 − 𝐵)) |
| 15 | 8 | oveq1i 7415 | . . . . . . . . . . 11 ⊢ (⦋𝑣 / 𝑥⦌𝐵 − 𝐵) = (𝐵 − 𝐵) |
| 16 | 14, 15 | eqtrdi 2786 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐹‘𝑣) − 𝐵) = (𝐵 − 𝐵)) |
| 17 | 16 | fveq2d 6880 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = (abs‘(𝐵 − 𝐵))) |
| 18 | 1 | subidd 11582 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
| 19 | 18 | fveq2d 6880 | . . . . . . . . . 10 ⊢ (𝜑 → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
| 20 | 19 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
| 21 | abs0 15304 | . . . . . . . . . 10 ⊢ (abs‘0) = 0 | |
| 22 | 21 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘0) = 0) |
| 23 | 17, 20, 22 | 3eqtrd 2774 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = 0) |
| 24 | 23 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = 0) |
| 25 | rpgt0 13021 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
| 26 | 25 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → 0 < 𝑦) |
| 27 | 24, 26 | eqbrtrd 5141 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦) |
| 28 | 27 | a1d 25 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
| 29 | 28 | ralrimiva 3132 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
| 30 | brimralrspcev 5180 | . . . 4 ⊢ ((1 ∈ ℝ+ ∧ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) | |
| 31 | 3, 29, 30 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
| 32 | 31 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
| 33 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 34 | 33, 11 | fmptd 7104 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 35 | constlimc.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 36 | constlimc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 37 | 34, 35, 36 | ellimc3 25832 | . 2 ⊢ (𝜑 → (𝐵 ∈ (𝐹 limℂ 𝐶) ↔ (𝐵 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)))) |
| 38 | 1, 32, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ⦋csb 3874 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 < clt 11269 − cmin 11466 ℝ+crp 13008 abscabs 15253 limℂ climc 25815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-rest 17436 df-topn 17437 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cnp 23166 df-xms 24259 df-ms 24260 df-limc 25819 |
| This theorem is referenced by: reclimc 45682 fourierdlem53 46188 fourierdlem60 46195 fourierdlem61 46196 fourierdlem73 46208 fourierdlem74 46209 fourierdlem75 46210 fourierdlem76 46211 fouriersw 46260 |
| Copyright terms: Public domain | W3C validator |