Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > constlimc | Structured version Visualization version GIF version |
Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
constlimc.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
constlimc.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
constlimc.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
constlimc.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
constlimc | ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | constlimc.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | 1rp 12716 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
3 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 1 ∈ ℝ+) |
4 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ 𝐴) | |
5 | vex 3434 | . . . . . . . . . . . . . . . 16 ⊢ 𝑣 ∈ V | |
6 | nfcv 2908 | . . . . . . . . . . . . . . . 16 ⊢ Ⅎ𝑥𝐵 | |
7 | csbtt 3853 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑣 ∈ V ∧ Ⅎ𝑥𝐵) → ⦋𝑣 / 𝑥⦌𝐵 = 𝐵) | |
8 | 5, 6, 7 | mp2an 688 | . . . . . . . . . . . . . . 15 ⊢ ⦋𝑣 / 𝑥⦌𝐵 = 𝐵 |
9 | 8, 1 | eqeltrid 2844 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) |
10 | 9 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) |
11 | constlimc.f | . . . . . . . . . . . . . 14 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
12 | 11 | fvmpts 6872 | . . . . . . . . . . . . 13 ⊢ ((𝑣 ∈ 𝐴 ∧ ⦋𝑣 / 𝑥⦌𝐵 ∈ ℂ) → (𝐹‘𝑣) = ⦋𝑣 / 𝑥⦌𝐵) |
13 | 4, 10, 12 | syl2anc 583 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) = ⦋𝑣 / 𝑥⦌𝐵) |
14 | 13 | oveq1d 7283 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐹‘𝑣) − 𝐵) = (⦋𝑣 / 𝑥⦌𝐵 − 𝐵)) |
15 | 8 | oveq1i 7278 | . . . . . . . . . . 11 ⊢ (⦋𝑣 / 𝑥⦌𝐵 − 𝐵) = (𝐵 − 𝐵) |
16 | 14, 15 | eqtrdi 2795 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝐹‘𝑣) − 𝐵) = (𝐵 − 𝐵)) |
17 | 16 | fveq2d 6772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = (abs‘(𝐵 − 𝐵))) |
18 | 1 | subidd 11303 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
19 | 18 | fveq2d 6772 | . . . . . . . . . 10 ⊢ (𝜑 → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
20 | 19 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
21 | abs0 14978 | . . . . . . . . . 10 ⊢ (abs‘0) = 0 | |
22 | 21 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘0) = 0) |
23 | 17, 20, 22 | 3eqtrd 2783 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = 0) |
24 | 23 | adantlr 711 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) = 0) |
25 | rpgt0 12724 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
26 | 25 | ad2antlr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → 0 < 𝑦) |
27 | 24, 26 | eqbrtrd 5100 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦) |
28 | 27 | a1d 25 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑣 ∈ 𝐴) → ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
29 | 28 | ralrimiva 3109 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
30 | brimralrspcev 5139 | . . . 4 ⊢ ((1 ∈ ℝ+ ∧ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 1) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) | |
31 | 3, 29, 30 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
32 | 31 | ralrimiva 3109 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)) |
33 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
34 | 33, 11 | fmptd 6982 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
35 | constlimc.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
36 | constlimc.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
37 | 34, 35, 36 | ellimc3 25024 | . 2 ⊢ (𝜑 → (𝐵 ∈ (𝐹 limℂ 𝐶) ↔ (𝐵 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑤 ∈ ℝ+ ∀𝑣 ∈ 𝐴 ((𝑣 ≠ 𝐶 ∧ (abs‘(𝑣 − 𝐶)) < 𝑤) → (abs‘((𝐹‘𝑣) − 𝐵)) < 𝑦)))) |
38 | 1, 32, 37 | mpbir2and 709 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝐹 limℂ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Ⅎwnfc 2888 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 Vcvv 3430 ⦋csb 3836 ⊆ wss 3891 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 < clt 10993 − cmin 11188 ℝ+crp 12712 abscabs 14926 limℂ climc 25007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fi 9131 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-fz 13222 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-mulr 16957 df-starv 16958 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-rest 17114 df-topn 17115 df-topgen 17135 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-cnfld 20579 df-top 22024 df-topon 22041 df-topsp 22063 df-bases 22077 df-cnp 22360 df-xms 23454 df-ms 23455 df-limc 25011 |
This theorem is referenced by: reclimc 43148 fourierdlem53 43654 fourierdlem60 43661 fourierdlem61 43662 fourierdlem73 43674 fourierdlem74 43675 fourierdlem75 43676 fourierdlem76 43677 fouriersw 43726 |
Copyright terms: Public domain | W3C validator |