Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem48 Structured version   Visualization version   GIF version

Theorem fourierdlem48 46159
Description: The given periodic function 𝐹 has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem48.a (𝜑𝐴 ∈ ℝ)
fourierdlem48.b (𝜑𝐵 ∈ ℝ)
fourierdlem48.altb (𝜑𝐴 < 𝐵)
fourierdlem48.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem48.t 𝑇 = (𝐵𝐴)
fourierdlem48.m (𝜑𝑀 ∈ ℕ)
fourierdlem48.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem48.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem48.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem48.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem48.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem48.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem48.x (𝜑𝑋 ∈ ℝ)
fourierdlem48.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem48.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
fourierdlem48.ch (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
Assertion
Ref Expression
fourierdlem48 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑘,𝑥   𝐵,𝑚,𝑝   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑦   𝑖,𝐹,𝑘,𝑥,𝑦   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑦,𝑀   𝑄,𝑖,𝑘,𝑥   𝑄,𝑝   𝑦,𝑄   𝑇,𝑖,𝑘,𝑥,𝑦   𝑖,𝑋,𝑘,𝑥,𝑦   𝑥,𝑍   𝜒,𝑥   𝜑,𝑖,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝜒(𝑦,𝑖,𝑘,𝑚,𝑝)   𝐴(𝑦,𝑘)   𝐵(𝑦)   𝐷(𝑦,𝑖,𝑚,𝑝)   𝑃(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑇(𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝑀(𝑥)   𝑋(𝑚,𝑝)   𝑍(𝑦,𝑖,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem48
Dummy variables 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝜑)
2 0zd 12548 . . . . . 6 (𝜑 → 0 ∈ ℤ)
3 fourierdlem48.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
43nnzd 12563 . . . . . 6 (𝜑𝑀 ∈ ℤ)
53nngt0d 12242 . . . . . 6 (𝜑 → 0 < 𝑀)
6 fzolb 13633 . . . . . 6 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
72, 4, 5, 6syl3anbrc 1344 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
87adantr 480 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 0 ∈ (0..^𝑀))
9 fourierdlem48.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
10 fourierdlem48.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
119, 10resubcld 11613 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ℝ)
12 fourierdlem48.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
13 fourierdlem48.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
149, 13resubcld 11613 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
1512, 14eqeltrid 2833 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
16 fourierdlem48.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
1713, 9posdifd 11772 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
1816, 17mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1918, 12breqtrrdi 5152 . . . . . . . . . 10 (𝜑 → 0 < 𝑇)
2019gt0ne0d 11749 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
2111, 15, 20redivcld 12017 . . . . . . . 8 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2322flcld 13767 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
24 1zzd 12571 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 1 ∈ ℤ)
2523, 24zsubcld 12650 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ)
26 id 22 . . . . . . . 8 ((𝐸𝑋) = 𝐵 → (𝐸𝑋) = 𝐵)
2712a1i 11 . . . . . . . 8 ((𝐸𝑋) = 𝐵𝑇 = (𝐵𝐴))
2826, 27oveq12d 7408 . . . . . . 7 ((𝐸𝑋) = 𝐵 → ((𝐸𝑋) − 𝑇) = (𝐵 − (𝐵𝐴)))
299recnd 11209 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3013recnd 11209 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3129, 30nncand 11545 . . . . . . 7 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3228, 31sylan9eqr 2787 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = 𝐴)
33 fourierdlem48.q . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem48.p . . . . . . . . . . . . . . . 16 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
3534fourierdlem2 46114 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
363, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3733, 36mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3837simpld 494 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
39 elmapi 8825 . . . . . . . . . . . 12 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
413nnnn0d 12510 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
42 nn0uz 12842 . . . . . . . . . . . . 13 0 = (ℤ‘0)
4341, 42eleqtrdi 2839 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
44 eluzfz1 13499 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4543, 44syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
4640, 45ffvelcdmd 7060 . . . . . . . . . 10 (𝜑 → (𝑄‘0) ∈ ℝ)
4746rexrd 11231 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
48 1zzd 12571 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
49 0le1 11708 . . . . . . . . . . . . 13 0 ≤ 1
5049a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 1)
513nnge1d 12241 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑀)
522, 4, 48, 50, 51elfzd 13483 . . . . . . . . . . 11 (𝜑 → 1 ∈ (0...𝑀))
5340, 52ffvelcdmd 7060 . . . . . . . . . 10 (𝜑 → (𝑄‘1) ∈ ℝ)
5453rexrd 11231 . . . . . . . . 9 (𝜑 → (𝑄‘1) ∈ ℝ*)
5513rexrd 11231 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
5637simprd 495 . . . . . . . . . . 11 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
5756simplld 767 . . . . . . . . . 10 (𝜑 → (𝑄‘0) = 𝐴)
5813leidd 11751 . . . . . . . . . 10 (𝜑𝐴𝐴)
5957, 58eqbrtrd 5132 . . . . . . . . 9 (𝜑 → (𝑄‘0) ≤ 𝐴)
6057eqcomd 2736 . . . . . . . . . 10 (𝜑𝐴 = (𝑄‘0))
61 0re 11183 . . . . . . . . . . . . 13 0 ∈ ℝ
62 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
6362anbi2d 630 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
64 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
65 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
6665fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
6764, 66breq12d 5123 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
6863, 67imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
6937simprrd 773 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7069r19.21bi 3230 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7168, 70vtoclg 3523 . . . . . . . . . . . . 13 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
7261, 71ax-mp 5 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
737, 72mpdan 687 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
74 1e0p1 12698 . . . . . . . . . . . 12 1 = (0 + 1)
7574fveq2i 6864 . . . . . . . . . . 11 (𝑄‘1) = (𝑄‘(0 + 1))
7673, 75breqtrrdi 5152 . . . . . . . . . 10 (𝜑 → (𝑄‘0) < (𝑄‘1))
7760, 76eqbrtrd 5132 . . . . . . . . 9 (𝜑𝐴 < (𝑄‘1))
7847, 54, 55, 59, 77elicod 13363 . . . . . . . 8 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘1)))
7975oveq2i 7401 . . . . . . . 8 ((𝑄‘0)[,)(𝑄‘1)) = ((𝑄‘0)[,)(𝑄‘(0 + 1)))
8078, 79eleqtrdi 2839 . . . . . . 7 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8180adantr 480 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8232, 81eqeltrd 2829 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
83 fourierdlem48.e . . . . . . . . . . 11 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
8483a1i 11 . . . . . . . . . 10 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
85 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑋𝑥 = 𝑋)
86 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
8785, 86oveq12d 7408 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
8887adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
89 fourierdlem48.z . . . . . . . . . . . . . 14 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
9089a1i 11 . . . . . . . . . . . . 13 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
91 oveq2 7398 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
9291oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
9392fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
9493oveq1d 7405 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9594adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9621flcld 13767 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
9796zred 12645 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
9897, 15remulcld 11211 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
9990, 95, 10, 98fvmptd 6978 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
10099, 98eqeltrd 2829 . . . . . . . . . . 11 (𝜑 → (𝑍𝑋) ∈ ℝ)
10110, 100readdcld 11210 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
10284, 88, 10, 101fvmptd 6978 . . . . . . . . 9 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
10399oveq2d 7406 . . . . . . . . 9 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
104102, 103eqtrd 2765 . . . . . . . 8 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
105104oveq1d 7405 . . . . . . 7 (𝜑 → ((𝐸𝑋) − 𝑇) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇))
10610recnd 11209 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
10798recnd 11209 . . . . . . . 8 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
10815recnd 11209 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
109106, 107, 108addsubassd 11560 . . . . . . 7 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)))
11096zcnd 12646 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
111110, 108mulsubfacd 11646 . . . . . . . 8 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
112111oveq2d 7406 . . . . . . 7 (𝜑 → (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
113105, 109, 1123eqtrd 2769 . . . . . 6 (𝜑 → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
114113adantr 480 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
115 oveq1 7397 . . . . . . . . 9 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑘 · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
116115oveq2d 7406 . . . . . . . 8 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
117116eqeq2d 2741 . . . . . . 7 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))))
118117anbi2d 630 . . . . . 6 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))))
119118rspcev 3591 . . . . 5 ((((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ ∧ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12025, 82, 114, 119syl12anc 836 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12164, 66oveq12d 7408 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘0)[,)(𝑄‘(0 + 1))))
122121eleq2d 2815 . . . . . . 7 (𝑖 = 0 → (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1)))))
123122anbi1d 631 . . . . . 6 (𝑖 = 0 → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
124123rexbidv 3158 . . . . 5 (𝑖 = 0 → (∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
125124rspcev 3591 . . . 4 ((0 ∈ (0..^𝑀) ∧ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
1268, 120, 125syl2anc 584 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
127 ovex 7423 . . . 4 ((𝐸𝑋) − 𝑇) ∈ V
128 eleq1 2817 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
129 eqeq1 2734 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
130128, 129anbi12d 632 . . . . . . 7 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
1311302rexbidv 3203 . . . . . 6 (𝑦 = ((𝐸𝑋) − 𝑇) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
132131anbi2d 630 . . . . 5 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))))
133132imbi1d 341 . . . 4 (𝑦 = ((𝐸𝑋) − 𝑇) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
134 simpr 484 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
135 nfv 1914 . . . . . . 7 𝑖𝜑
136 nfre1 3263 . . . . . . 7 𝑖𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
137135, 136nfan 1899 . . . . . 6 𝑖(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
138 nfv 1914 . . . . . . 7 𝑘𝜑
139 nfcv 2892 . . . . . . . 8 𝑘(0..^𝑀)
140 nfre1 3263 . . . . . . . 8 𝑘𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
141139, 140nfrexw 3289 . . . . . . 7 𝑘𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
142138, 141nfan 1899 . . . . . 6 𝑘(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
143 simp1 1136 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝜑)
144 simp2l 1200 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑖 ∈ (0..^𝑀))
145 simp3l 1202 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
146143, 144, 145jca31 514 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
147 simp2r 1201 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
148 simp3r 1203 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 = (𝑋 + (𝑘 · 𝑇)))
149 fourierdlem48.ch . . . . . . . . . 10 (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
150149biimpi 216 . . . . . . . . . . . . . . . . 17 (𝜒 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
151150simplld 767 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
152151simplld 767 . . . . . . . . . . . . . . 15 (𝜒𝜑)
153 fourierdlem48.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐷⟶ℝ)
154 frel 6696 . . . . . . . . . . . . . . 15 (𝐹:𝐷⟶ℝ → Rel 𝐹)
155 resindm 6004 . . . . . . . . . . . . . . . 16 (Rel 𝐹 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑋(,)+∞)))
156155eqcomd 2736 . . . . . . . . . . . . . . 15 (Rel 𝐹 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
157152, 153, 154, 1564syl 19 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
158 fdm 6700 . . . . . . . . . . . . . . . . 17 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
159152, 153, 1583syl 18 . . . . . . . . . . . . . . . 16 (𝜒 → dom 𝐹 = 𝐷)
160159ineq2d 4186 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑋(,)+∞) ∩ dom 𝐹) = ((𝑋(,)+∞) ∩ 𝐷))
161160reseq2d 5953 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
162157, 161eqtrd 2765 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
163162oveq1d 7405 . . . . . . . . . . . 12 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
164152, 153syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:𝐷⟶ℝ)
165 ax-resscn 11132 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
166165a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → ℝ ⊆ ℂ)
167164, 166fssd 6708 . . . . . . . . . . . . . 14 (𝜒𝐹:𝐷⟶ℂ)
168 inss2 4204 . . . . . . . . . . . . . . 15 ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷
169168a1i 11 . . . . . . . . . . . . . 14 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷)
170167, 169fssresd 6730 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)):((𝑋(,)+∞) ∩ 𝐷)⟶ℂ)
171 pnfxr 11235 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
172171a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → +∞ ∈ ℝ*)
173151simplrd 769 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑖 ∈ (0..^𝑀))
17440adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
175 fzofzp1 13732 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
176175adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
177174, 176ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
178152, 173, 177syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ)
179150simplrd 769 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑘 ∈ ℤ)
180179zred 12645 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑘 ∈ ℝ)
181152, 15syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑇 ∈ ℝ)
182180, 181remulcld 11211 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑘 · 𝑇) ∈ ℝ)
183178, 182resubcld 11613 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
184183rexrd 11231 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
185183ltpnfd 13088 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) < +∞)
186184, 172, 185xrltled 13117 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞)
187 iooss2 13349 . . . . . . . . . . . . . . 15 ((+∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
188172, 186, 187syl2anc 584 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
189179adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
190189zcnd 12646 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℂ)
191181recnd 11209 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑇 ∈ ℂ)
192191adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℂ)
193190, 192mulneg1d 11638 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
194193oveq2d 7406 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
195 elioore 13343 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℝ)
196195recnd 11209 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
197196adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
198190, 192mulcld 11201 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
199197, 198addcld 11200 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
200199, 198negsubd 11546 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
201197, 198pncand 11541 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
202194, 200, 2013eqtrrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
203152adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
204151simpld 494 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝜑𝑖 ∈ (0..^𝑀)))
205 fourierdlem48.cn . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
206 cncff 24793 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
207 fdm 6700 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
208205, 206, 2073syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
209 ssdmres 5987 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
210208, 209sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
211153, 158syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐹 = 𝐷)
212211adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
213210, 212sseqtrd 3986 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
214204, 213syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
215214adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
216 elfzofz 13643 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
217216adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
218174, 217ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
219152, 173, 218syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ∈ ℝ)
220219rexrd 11231 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ∈ ℝ*)
221220adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
222178rexrd 11231 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
223222adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
224195adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℝ)
225189zred 12645 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℝ)
226203, 15syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℝ)
227225, 226remulcld 11211 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
228224, 227readdcld 11210 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
229219adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
230152, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑋 ∈ ℝ)
231230, 182readdcld 11210 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
232231adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
233149simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑦 = (𝑋 + (𝑘 · 𝑇)))
234233eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑋 + (𝑘 · 𝑇)) = 𝑦)
235151simprd 495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
236234, 235eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
237 icogelb 13364 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
238220, 222, 236, 237syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
239238adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
240203, 10syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ)
241240rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
242178adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
243242, 227resubcld 11613 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
244243rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
245 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
246 ioogtlb 45500 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
247241, 244, 245, 246syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
248240, 224, 227, 247ltadd1dd 11796 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) < (𝑤 + (𝑘 · 𝑇)))
249229, 232, 228, 239, 248lelttrd 11339 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) < (𝑤 + (𝑘 · 𝑇)))
250 iooltub 45515 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
251241, 244, 245, 250syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
252224, 243, 227, 251ltadd1dd 11796 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
253178recnd 11209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℂ)
254182recnd 11209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 · 𝑇) ∈ ℂ)
255253, 254npcand 11544 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
256255adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
257252, 256breqtrd 5136 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (𝑄‘(𝑖 + 1)))
258221, 223, 228, 249, 257eliood 45503 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
259215, 258sseldd 3950 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
260189znegcld 12647 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -𝑘 ∈ ℤ)
261 ovex 7423 . . . . . . . . . . . . . . . . . . 19 (𝑤 + (𝑘 · 𝑇)) ∈ V
262 eleq1 2817 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥𝐷 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷))
2632623anbi2d 1443 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
264 oveq1 7397 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
265264eleq1d 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
266263, 265imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
267 negex 11426 . . . . . . . . . . . . . . . . . . . 20 -𝑘 ∈ V
268 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑗 ∈ ℤ ↔ -𝑘 ∈ ℤ))
2692683anbi3d 1444 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ)))
270 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = -𝑘 → (𝑗 · 𝑇) = (-𝑘 · 𝑇))
271270oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑥 + (𝑗 · 𝑇)) = (𝑥 + (-𝑘 · 𝑇)))
272271eleq1d 2814 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷))
273269, 272imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)))
274 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑘 ∈ ℤ ↔ 𝑗 ∈ ℤ))
2752743anbi3d 1444 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷𝑗 ∈ ℤ)))
276 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
277276oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (𝑗 · 𝑇)))
278277eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷))
279275, 278imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)))
280 fourierdlem48.dper . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
281279, 280chvarvv 1989 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)
282267, 273, 281vtocl 3527 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
283261, 266, 282vtocl 3527 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
284203, 259, 260, 283syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
285202, 284eqeltrd 2829 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
286285ralrimiva 3126 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
287 dfss3 3938 . . . . . . . . . . . . . . 15 ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷 ↔ ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
288286, 287sylibr 234 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
289188, 288ssind 4207 . . . . . . . . . . . . 13 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ((𝑋(,)+∞) ∩ 𝐷))
290 ioosscn 13376 . . . . . . . . . . . . . 14 (𝑋(,)+∞) ⊆ ℂ
291 ssinss1 4212 . . . . . . . . . . . . . 14 ((𝑋(,)+∞) ⊆ ℂ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
292290, 291mp1i 13 . . . . . . . . . . . . 13 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
293 eqid 2730 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
294 eqid 2730 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
295230rexrd 11231 . . . . . . . . . . . . . . 15 (𝜒𝑋 ∈ ℝ*)
296230leidd 11751 . . . . . . . . . . . . . . 15 (𝜒𝑋𝑋)
297233oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
298230recnd 11209 . . . . . . . . . . . . . . . . . 18 (𝜒𝑋 ∈ ℂ)
299298, 254pncand 11541 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑋)
300297, 299eqtr2d 2766 . . . . . . . . . . . . . . . 16 (𝜒𝑋 = (𝑦 − (𝑘 · 𝑇)))
301 icossre 13396 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
302219, 222, 301syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
303302, 235sseldd 3950 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 ∈ ℝ)
304 icoltub 45513 . . . . . . . . . . . . . . . . . 18 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑦 < (𝑄‘(𝑖 + 1)))
305220, 222, 235, 304syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 < (𝑄‘(𝑖 + 1)))
306303, 178, 182, 305ltsub1dd 11797 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑦 − (𝑘 · 𝑇)) < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
307300, 306eqbrtrd 5132 . . . . . . . . . . . . . . 15 (𝜒𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
308295, 184, 295, 296, 307elicod 13363 . . . . . . . . . . . . . 14 (𝜒𝑋 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
309 snunioo1 45517 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
310295, 184, 307, 309syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
311310fveq2d 6865 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
312293cnfldtop 24678 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
313 ovex 7423 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ∈ V
314313inex1 5275 . . . . . . . . . . . . . . . . . . 19 ((𝑋(,)+∞) ∩ 𝐷) ∈ V
315 snex 5394 . . . . . . . . . . . . . . . . . . 19 {𝑋} ∈ V
316314, 315unex 7723 . . . . . . . . . . . . . . . . . 18 (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V
317 resttop 23054 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
318312, 316, 317mp2an 692 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top
319318a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
320 retop 24656 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) ∈ Top
321320a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (topGen‘ran (,)) ∈ Top)
322316a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V)
323 iooretop 24660 . . . . . . . . . . . . . . . . . . 19 (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))
324323a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,)))
325 elrestr 17398 . . . . . . . . . . . . . . . . . 18 (((topGen‘ran (,)) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))) → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
326321, 322, 324, 325syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜒 → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
327 mnfxr 11238 . . . . . . . . . . . . . . . . . . . . . 22 -∞ ∈ ℝ*
328327a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
329184adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
330 icossre 13396 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*) → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
331230, 184, 330syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
332331sselda 3949 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ℝ)
333332mnfltd 13091 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ < 𝑥)
334295adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
335 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
336 icoltub 45513 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
337334, 329, 335, 336syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
338328, 329, 332, 333, 337eliood 45503 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
339 vsnid 4630 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 ∈ {𝑥}
340339a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋𝑥 ∈ {𝑥})
341 sneq 4602 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋 → {𝑥} = {𝑋})
342340, 341eleqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑋𝑥 ∈ {𝑋})
343 elun2 4149 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
344342, 343syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑋𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
345344adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
346295ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
347171a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → +∞ ∈ ℝ*)
348332adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
349230ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
350 icogelb 13364 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
351334, 329, 335, 350syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
352351adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
353 neqne 2934 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋𝑥𝑋)
354353adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
355349, 348, 352, 354leneltd 11335 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 < 𝑥)
356348ltpnfd 13088 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < +∞)
357346, 347, 348, 355, 356eliood 45503 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
358179zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜒𝑘 ∈ ℂ)
359358, 191mulneg1d 11638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜒 → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
360359oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜒 → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
361360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
362 ioosscn 13376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ
363362sseli 3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
364363adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
365254adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
366364, 365addcld 11200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
367366, 365negsubd 11546 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
368364, 365pncand 11541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
369361, 367, 3683eqtrrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
370182adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
371224, 370readdcld 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
372221, 223, 371, 249, 257eliood 45503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
373215, 372sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
3742683anbi3d 1444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
375270oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = -𝑘 → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
376375eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → (((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
377374, 376imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = -𝑘 → (((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
3782623anbi2d 1443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ)))
379 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)))
380379eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷))
381378, 380imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)))
382261, 381, 281vtocl 3527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)
383267, 377, 382vtocl 3527 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
384203, 373, 260, 383syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
385369, 384eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
386385ralrimiva 3126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
387386, 287sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
388387ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
389184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
390337adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
391346, 389, 348, 355, 390eliood 45503 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
392388, 391sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝐷)
393357, 392elind 4166 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
394 elun1 4148 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
395393, 394syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
396345, 395pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
397338, 396elind 4166 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
398295adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
399184adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
400 elinel1 4167 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
401 elioore 13343 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑥 ∈ ℝ)
402400, 401syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
403402rexrd 11231 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
404403adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
405 elinel2 4168 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
406230adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 ∈ ℝ)
40785eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋𝑋 = 𝑥)
408407adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 = 𝑥)
409406, 408eqled 11284 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 = 𝑋) → 𝑋𝑥)
410409adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 = 𝑋) → 𝑋𝑥)
411 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝜒)
412 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
413 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥 = 𝑋 → ¬ 𝑥 = 𝑋)
414 velsn 4608 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋)
415413, 414sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋 → ¬ 𝑥 ∈ {𝑋})
416415adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → ¬ 𝑥 ∈ {𝑋})
417 elunnel2 4121 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
418412, 416, 417syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
419 elinel1 4167 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (𝑋(,)+∞))
420418, 419syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
421230adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ)
422 elioore 13343 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝑋(,)+∞) → 𝑥 ∈ ℝ)
423422adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ ℝ)
424295adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ*)
425171a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → +∞ ∈ ℝ*)
426 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ (𝑋(,)+∞))
427 ioogtlb 45500 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
428424, 425, 426, 427syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
429421, 423, 428ltled 11329 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋𝑥)
430411, 420, 429syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
431410, 430pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑋𝑥)
432405, 431sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋𝑥)
433327a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
434184adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
435 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
436 iooltub 45515 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
437433, 434, 435, 436syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
438400, 437sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
439398, 399, 404, 432, 438elicod 13363 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
440397, 439impbida 800 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))))
441440eqrdv 2728 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
442 ioossre 13375 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ⊆ ℝ
443 ssinss1 4212 . . . . . . . . . . . . . . . . . . . 20 ((𝑋(,)+∞) ⊆ ℝ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
444442, 443mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
445230snssd 4776 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑋} ⊆ ℝ)
446444, 445unssd 4158 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
447 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = (topGen‘ran (,))
448293, 447rerest 24699 . . . . . . . . . . . . . . . . . 18 ((((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
449446, 448syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
450326, 441, 4493eltr4d 2844 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
451 isopn3i 22976 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
452319, 450, 451syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
453311, 452eqtr2d 2766 . . . . . . . . . . . . . 14 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
454308, 453eleqtrd 2831 . . . . . . . . . . . . 13 (𝜒𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
455170, 289, 292, 293, 294, 454limcres 25794 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
456289resabs1d 5982 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
457456oveq1d 7405 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
458165a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ⊆ ℂ)
459153, 458fssd 6708 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:𝐷⟶ℂ)
460211feq2d 6675 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
461459, 460mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:dom 𝐹⟶ℂ)
462152, 461syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐹:dom 𝐹⟶ℂ)
463462adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
464362a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ)
465387, 159sseqtrrd 3987 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
466465adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
467254adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑘 · 𝑇) ∈ ℂ)
468 eqid 2730 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
469 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (𝑘 · 𝑇))))
470469rexbidv 3158 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
471470elrab 3662 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
472471simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
473472adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
474 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥𝜒
475 nfre1 3263 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))
476 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥
477475, 476nfrabw 3446 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
478477nfcri 2884 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
479474, 478nfan 1899 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
480 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 𝑤𝐷
481 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤 = (𝑥 + (𝑘 · 𝑇)))
482 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
483482anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ↔ (𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))))
484 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
485484eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷))
486483, 485imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑥 → (((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)))
487486, 259chvarvv 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
4884873adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
489481, 488eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤𝐷)
4904893exp 1119 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
491490adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
492479, 480, 491rexlimd 3245 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷))
493473, 492mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → 𝑤𝐷)
494493ralrimiva 3126 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
495 dfss3 3938 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
496494, 495sylibr 234 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷)
497496, 159sseqtrrd 3987 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
498497adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
499152adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
500387sselda 3949 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥𝐷)
501179adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
502 fourierdlem48.per . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
503499, 500, 501, 502syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
504503adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) ∧ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
505 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
506463, 464, 466, 467, 468, 498, 504, 505limcperiod 45633 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))))
507255eqcomd 2736 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) = (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
508233, 507oveq12d 7408 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) = ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))))
509230, 183, 182iooshift 45527 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
510508, 509eqtr2d 2766 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = (𝑦(,)(𝑄‘(𝑖 + 1))))
511510reseq2d 5953 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
512511, 234oveq12d 7408 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
513512adantr 480 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
514506, 513eleqtrd 2831 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
515462adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝐹:dom 𝐹⟶ℂ)
516 ioosscn 13376 . . . . . . . . . . . . . . . . . 18 (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
517516a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
518 icogelb 13364 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑦)
519220, 222, 235, 518syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ≤ 𝑦)
520 iooss1 13348 . . . . . . . . . . . . . . . . . . . . 21 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄𝑖) ≤ 𝑦) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
521220, 519, 520syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
522521, 214sstrd 3960 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
523522, 159sseqtrrd 3987 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
524523adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
525358negcld 11527 . . . . . . . . . . . . . . . . . . 19 (𝜒 → -𝑘 ∈ ℂ)
526525, 191mulcld 11201 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-𝑘 · 𝑇) ∈ ℂ)
527526adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (-𝑘 · 𝑇) ∈ ℂ)
528 eqid 2730 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
529 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (-𝑘 · 𝑇))))
530529rexbidv 3158 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
531530elrab 3662 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
532531simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
533532adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
534 nfre1 3263 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))
535534, 476nfrabw 3446 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
536535nfcri 2884 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
537474, 536nfan 1899 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
538 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤 = (𝑥 + (-𝑘 · 𝑇)))
539152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
540522sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
541179adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑘 ∈ ℤ)
542541znegcld 12647 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
543539, 540, 542, 282syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
5445433adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
545538, 544eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤𝐷)
5465453exp 1119 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
547546adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
548537, 480, 547rexlimd 3245 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷))
549533, 548mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → 𝑤𝐷)
550549ralrimiva 3126 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
551 dfss3 3938 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
552550, 551sylibr 234 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷)
553552, 159sseqtrrd 3987 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
554553adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
555152ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
556540adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
557542adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
558271fveq2d 6865 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹‘(𝑥 + (-𝑘 · 𝑇))))
559558eqeq1d 2732 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → ((𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥)))
560269, 559imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))))
561277fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (𝑗 · 𝑇))))
562561eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)))
563275, 562imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))))
564563, 502chvarvv 1989 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))
565267, 560, 564vtocl 3527 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
566555, 556, 557, 565syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
567 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
568515, 517, 524, 527, 528, 554, 566, 567limcperiod 45633 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))))
569359oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = (𝑦 + -(𝑘 · 𝑇)))
570303recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ℂ)
571570, 254negsubd 11546 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + -(𝑘 · 𝑇)) = (𝑦 − (𝑘 · 𝑇)))
572300eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = 𝑋)
573569, 571, 5723eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
574573eqcomd 2736 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑋 = (𝑦 + (-𝑘 · 𝑇)))
575359oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)))
576253, 254negsubd 11546 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
577575, 576eqtr2d 2766 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)))
578574, 577oveq12d 7408 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))))
579180renegcld 11612 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → -𝑘 ∈ ℝ)
580579, 181remulcld 11211 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (-𝑘 · 𝑇) ∈ ℝ)
581303, 178, 580iooshift 45527 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
582578, 581eqtr2d 2766 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
583582adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
584583reseq2d 5953 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
585573adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
586584, 585oveq12d 7408 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
587568, 586eleqtrd 2831 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
588514, 587impbida 800 . . . . . . . . . . . . . 14 (𝜒 → (𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) ↔ 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)))
589588eqrdv 2728 . . . . . . . . . . . . 13 (𝜒 → ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
590457, 589eqtrd 2765 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
591163, 455, 5903eqtr2d 2771 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
592152, 173, 70syl2anc 584 . . . . . . . . . . . . . 14 (𝜒 → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
593152, 173, 205syl2anc 584 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
594 fourierdlem48.r . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
595152, 173, 594syl2anc 584 . . . . . . . . . . . . . 14 (𝜒𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
596 eqid 2730 . . . . . . . . . . . . . 14 if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) = if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦))
597 eqid 2730 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
598219, 178, 592, 593, 595, 303, 178, 305, 521, 596, 597fourierdlem32 46144 . . . . . . . . . . . . 13 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
599521resabs1d 5982 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
600599oveq1d 7405 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
601598, 600eleqtrd 2831 . . . . . . . . . . . 12 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
602 ne0i 4307 . . . . . . . . . . . 12 (if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
603601, 602syl 17 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
604591, 603eqnetrd 2993 . . . . . . . . . 10 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
605149, 604sylbir 235 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
606146, 147, 148, 605syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6076063exp 1119 . . . . . . 7 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
608607adantr 480 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
609137, 142, 608rexlim2d 45630 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
610134, 609mpd 15 . . . 4 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
611127, 133, 610vtocl 3527 . . 3 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6121, 126, 611syl2anc 584 . 2 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
613 iocssre 13395 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
61455, 9, 613syl2anc 584 . . . . 5 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
615 ovex 7423 . . . . . . . . . . 11 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
61689fvmpt2 6982 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
617615, 616mpan2 691 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
618617oveq2d 7406 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
619618mpteq2ia 5205 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62083, 619eqtri 2753 . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62113, 9, 16, 12, 620fourierdlem4 46116 . . . . . 6 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
622621, 10ffvelcdmd 7060 . . . . 5 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
623614, 622sseldd 3950 . . . 4 (𝜑 → (𝐸𝑋) ∈ ℝ)
624623adantr 480 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝐸𝑋) ∈ ℝ)
625 simpl 482 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → 𝜑)
626 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
627 ffn 6691 . . . . . . . . . . . . . . 15 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
62840, 627syl 17 . . . . . . . . . . . . . 14 (𝜑𝑄 Fn (0...𝑀))
629628ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
630 fvelrnb 6924 . . . . . . . . . . . . 13 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
631629, 630syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
632626, 631mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
633 1zzd 12571 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
634 elfzelz 13492 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
635634ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
636635zred 12645 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
637 elfzle1 13495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
638637ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
639 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
640639eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
641640ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
642 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
643642adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
64437simprld 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
645644simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑄‘0) = 𝐴)
646645ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
647641, 643, 6463eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
648647adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
649648adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
65013adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
65155adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
6529rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐵 ∈ ℝ*)
653652adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
654 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
655 iocgtlb 45507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
656651, 653, 654, 655syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
657650, 656gtned 11316 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
658657neneqd 2931 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
659658ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
660649, 659pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
661660neqned 2933 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
662636, 638, 661ne0gt0d 11318 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
663 0zd 12548 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
664 zltp1le 12590 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
665663, 635, 664syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
666662, 665mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
66774, 666eqbrtrid 5145 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
668 eluz2 12806 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
669633, 635, 667, 668syl3anbrc 1344 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
670 nnuz 12843 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
671669, 670eleqtrrdi 2840 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
672 nnm1nn0 12490 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
673671, 672syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
674673, 42eleqtrdi 2839 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
6754ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
676 peano2zm 12583 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
677634, 676syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
678677zred 12645 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
679634zred 12645 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
680 elfzel2 13490 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
681680zred 12645 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
682679ltm1d 12122 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
683 elfzle2 13496 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
684678, 679, 681, 682, 683ltletrd 11341 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
685684ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
686 elfzo2 13630 . . . . . . . . . . . . . . . 16 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
687674, 675, 685, 686syl3anbrc 1344 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
68840ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
689635, 676syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
690673nn0ge0d 12513 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
691678, 681, 684ltled 11329 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
692691ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
693663, 675, 689, 690, 692elfzd 13483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
694688, 693ffvelcdmd 7060 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
695694rexrd 11231 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
69640ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
697696rexrd 11231 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
698697adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
699698adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
700614sselda 3949 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
701700rexrd 11231 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
702701ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
703 simplll 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
704 ovex 7423 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 − 1) ∈ V
705 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
706705anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
707 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
708 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
709708fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
710707, 709breq12d 5123 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
711706, 710imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
712704, 711, 70vtocl 3527 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
713703, 687, 712syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
714634zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
715 1cnd 11176 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
716714, 715npcand 11544 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
717716eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
718717fveq2d 6865 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
719718eqcomd 2736 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
720719ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
721713, 720breqtrd 5136 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
722 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
723721, 722breqtrd 5136 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
724623leidd 11751 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
725724ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
726640adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
727725, 726breqtrd 5136 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
728727adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
729695, 699, 702, 723, 728eliocd 45512 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
730718oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
731730ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
732729, 731eleqtrd 2831 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
733707, 709oveq12d 7408 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
734733eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
735734rspcev 3591 . . . . . . . . . . . . . . 15 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
736687, 732, 735syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
737736ex 412 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
738737adantlr 715 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
739738rexlimdva 3135 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
740632, 739mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
7413ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
74240ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
743 iocssicc 13405 . . . . . . . . . . . . . . 15 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
744645eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
745644simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄𝑀) = 𝐵)
746745eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
747744, 746oveq12d 7408 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
748743, 747sseqtrid 3992 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
749748sselda 3949 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
750749adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
751 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
752 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
753752breq1d 5120 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
754753cbvrabv 3419 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
755754supeq1i 9405 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
756741, 742, 750, 751, 755fourierdlem25 46137 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
757 ioossioc 45497 . . . . . . . . . . . . . 14 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
758757sseli 3945 . . . . . . . . . . . . 13 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
759758a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
760759reximdva 3147 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
761756, 760mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
762740, 761pm2.61dan 812 . . . . . . . . 9 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
763622, 762mpdan 687 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
764 fveq2 6861 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
765 oveq1 7397 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
766765fveq2d 6865 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
767764, 766oveq12d 7408 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
768767eleq2d 2815 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
769768cbvrexvw 3217 . . . . . . . 8 (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
770763, 769sylib 218 . . . . . . 7 (𝜑 → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
771770adantr 480 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
772 elfzonn0 13675 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℕ0)
773 1nn0 12465 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
774773a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 1 ∈ ℕ0)
775772, 774nn0addcld 12514 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ ℕ0)
776775, 42eleqtrdi 2839 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (ℤ‘0))
777776adantr 480 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7787773ad2antl2 1187 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7794ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
7807793ad2antl1 1186 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
781772nn0red 12511 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
782781adantr 480 . . . . . . . . . . . . 13 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
7837823ad2antl2 1187 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
784 1red 11182 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 1 ∈ ℝ)
785783, 784readdcld 11210 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
786780zred 12645 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℝ)
787 elfzop1le2 13640 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ≤ 𝑀)
788787adantr 480 . . . . . . . . . . . 12 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
7897883ad2antl2 1187 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
790 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
791 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝑗 + 1) → (𝑄𝑀) = (𝑄‘(𝑗 + 1)))
792791eqcomd 2736 . . . . . . . . . . . . . . . . 17 (𝑀 = (𝑗 + 1) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
793792adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
794745ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄𝑀) = 𝐵)
795790, 793, 7943eqtrd 2769 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
796795adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
797 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) ≠ 𝐵)
798797neneqd 2931 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → ¬ (𝐸𝑋) = 𝐵)
799796, 798pm2.65da 816 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ¬ 𝑀 = (𝑗 + 1))
800799neqned 2933 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
8018003ad2antl1 1186 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
802785, 786, 789, 801leneltd 11335 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) < 𝑀)
803 elfzo2 13630 . . . . . . . . . 10 ((𝑗 + 1) ∈ (0..^𝑀) ↔ ((𝑗 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 + 1) < 𝑀))
804778, 780, 802, 803syl3anbrc 1344 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (0..^𝑀))
80540adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
806 fzofzp1 13732 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
807806adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
808805, 807ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
809808rexrd 11231 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
810809adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8118103adant3 1132 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
812811adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
813 simpl1l 1225 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝜑)
814813, 40syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑄:(0...𝑀)⟶ℝ)
815 fzofzp1 13732 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ (0..^𝑀) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
816804, 815syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
817814, 816ffvelcdmd 7060 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ)
818817rexrd 11231 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ*)
819623rexrd 11231 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ ℝ*)
820819ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8218203ad2antl1 1186 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
822808leidd 11751 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
823822adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
824 id 22 . . . . . . . . . . . . . . 15 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
825824eqcomd 2736 . . . . . . . . . . . . . 14 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
826825adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
827823, 826breqtrd 5136 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
828827adantllr 719 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
8298283adantl3 1169 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
830 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
831 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
832 ovex 7423 . . . . . . . . . . . . . 14 (𝑗 + 1) ∈ V
833 eleq1 2817 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 + 1) ∈ (0..^𝑀)))
834833anbi2d 630 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀))))
835 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄𝑖) = (𝑄‘(𝑗 + 1)))
836 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 + 1) → (𝑖 + 1) = ((𝑗 + 1) + 1))
837836fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 + 1) + 1)))
838835, 837breq12d 5123 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1))))
839834, 838imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = (𝑗 + 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))))
840832, 839, 70vtocl 3527 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
841840adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
842831, 841eqbrtrd 5132 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
843813, 804, 830, 842syl21anc 837 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
844812, 818, 821, 829, 843elicod 13363 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
845835, 837oveq12d 7408 . . . . . . . . . . 11 (𝑖 = (𝑗 + 1) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
846845eleq2d 2815 . . . . . . . . . 10 (𝑖 = (𝑗 + 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))))
847846rspcev 3591 . . . . . . . . 9 (((𝑗 + 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
848804, 844, 847syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
849 simpl2 1193 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ (0..^𝑀))
850 id 22 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
8518503adant1r 1178 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
852 elfzofz 13643 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
853852adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
854805, 853ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ)
855854rexrd 11231 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ*)
856855adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
8578563adantl3 1169 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
858809adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8598583adantl3 1169 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
860819adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8618603ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8628543adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ)
8636233ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ℝ)
8648553adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ*)
8658093adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
866 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
867 iocgtlb 45507 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
868864, 865, 866, 867syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
869862, 863, 868ltled 11329 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ≤ (𝐸𝑋))
870869adantr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ≤ (𝐸𝑋))
871863adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ)
872808adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
8738723adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
874 iocleub 45508 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
875864, 865, 866, 874syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
876875adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
877 neqne 2934 . . . . . . . . . . . . . 14 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) ≠ (𝑄‘(𝑗 + 1)))
878877necomd 2981 . . . . . . . . . . . . 13 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
879878adantl 481 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
880871, 873, 876, 879leneltd 11335 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘(𝑗 + 1)))
881857, 859, 861, 870, 880elicod 13363 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
882851, 881sylan 580 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
883764, 766oveq12d 7408 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
884883eleq2d 2815 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))))
885884rspcev 3591 . . . . . . . . 9 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
886849, 882, 885syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
887848, 886pm2.61dan 812 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
888887rexlimdv3a 3139 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
889771, 888mpd 15 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
890 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
891 oveq1 7397 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
892891oveq2d 7406 . . . . . . . . . . . 12 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
893892eqeq2d 2741 . . . . . . . . . . 11 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
894893rspcev 3591 . . . . . . . . . 10 (((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ ∧ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
89596, 104, 894syl2anc 584 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
896895ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
897 r19.42v 3170 . . . . . . . 8 (∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
898890, 896, 897sylanbrc 583 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
899898ex 412 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
900899reximdv 3149 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
901889, 900mpd 15 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
902625, 901jca 511 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
903 eleq1 2817 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
904 eqeq1 2734 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
905903, 904anbi12d 632 . . . . . . 7 (𝑦 = (𝐸𝑋) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
9069052rexbidv 3203 . . . . . 6 (𝑦 = (𝐸𝑋) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
907906anbi2d 630 . . . . 5 (𝑦 = (𝐸𝑋) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))))
908907imbi1d 341 . . . 4 (𝑦 = (𝐸𝑋) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
909908, 610vtoclg 3523 . . 3 ((𝐸𝑋) ∈ ℝ → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
910624, 902, 909sylc 65 . 2 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
911612, 910pm2.61dane 3013 1 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  Rel wrel 5646   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  supcsup 9398  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  (,)cioo 13313  (,]cioc 13314  [,)cico 13315  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  cfl 13759  t crest 17390  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  intcnt 22911  cnccncf 24776   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-ntr 22914  df-cn 23121  df-cnp 23122  df-xms 24215  df-ms 24216  df-cncf 24778  df-limc 25774
This theorem is referenced by:  fourierdlem94  46205  fourierdlem113  46224
  Copyright terms: Public domain W3C validator