Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem48 Structured version   Visualization version   GIF version

Theorem fourierdlem48 46135
Description: The given periodic function 𝐹 has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem48.a (𝜑𝐴 ∈ ℝ)
fourierdlem48.b (𝜑𝐵 ∈ ℝ)
fourierdlem48.altb (𝜑𝐴 < 𝐵)
fourierdlem48.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem48.t 𝑇 = (𝐵𝐴)
fourierdlem48.m (𝜑𝑀 ∈ ℕ)
fourierdlem48.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem48.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem48.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem48.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem48.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem48.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem48.x (𝜑𝑋 ∈ ℝ)
fourierdlem48.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem48.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
fourierdlem48.ch (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
Assertion
Ref Expression
fourierdlem48 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑘,𝑥   𝐵,𝑚,𝑝   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑦   𝑖,𝐹,𝑘,𝑥,𝑦   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑦,𝑀   𝑄,𝑖,𝑘,𝑥   𝑄,𝑝   𝑦,𝑄   𝑇,𝑖,𝑘,𝑥,𝑦   𝑖,𝑋,𝑘,𝑥,𝑦   𝑥,𝑍   𝜒,𝑥   𝜑,𝑖,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝜒(𝑦,𝑖,𝑘,𝑚,𝑝)   𝐴(𝑦,𝑘)   𝐵(𝑦)   𝐷(𝑦,𝑖,𝑚,𝑝)   𝑃(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑇(𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝑀(𝑥)   𝑋(𝑚,𝑝)   𝑍(𝑦,𝑖,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem48
Dummy variables 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝜑)
2 0zd 12483 . . . . . 6 (𝜑 → 0 ∈ ℤ)
3 fourierdlem48.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
43nnzd 12498 . . . . . 6 (𝜑𝑀 ∈ ℤ)
53nngt0d 12177 . . . . . 6 (𝜑 → 0 < 𝑀)
6 fzolb 13568 . . . . . 6 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
72, 4, 5, 6syl3anbrc 1344 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
87adantr 480 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 0 ∈ (0..^𝑀))
9 fourierdlem48.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
10 fourierdlem48.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
119, 10resubcld 11548 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ℝ)
12 fourierdlem48.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
13 fourierdlem48.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
149, 13resubcld 11548 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
1512, 14eqeltrid 2832 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
16 fourierdlem48.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
1713, 9posdifd 11707 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
1816, 17mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1918, 12breqtrrdi 5134 . . . . . . . . . 10 (𝜑 → 0 < 𝑇)
2019gt0ne0d 11684 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
2111, 15, 20redivcld 11952 . . . . . . . 8 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2322flcld 13702 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
24 1zzd 12506 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 1 ∈ ℤ)
2523, 24zsubcld 12585 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ)
26 id 22 . . . . . . . 8 ((𝐸𝑋) = 𝐵 → (𝐸𝑋) = 𝐵)
2712a1i 11 . . . . . . . 8 ((𝐸𝑋) = 𝐵𝑇 = (𝐵𝐴))
2826, 27oveq12d 7367 . . . . . . 7 ((𝐸𝑋) = 𝐵 → ((𝐸𝑋) − 𝑇) = (𝐵 − (𝐵𝐴)))
299recnd 11143 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3013recnd 11143 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3129, 30nncand 11480 . . . . . . 7 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3228, 31sylan9eqr 2786 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = 𝐴)
33 fourierdlem48.q . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem48.p . . . . . . . . . . . . . . . 16 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
3534fourierdlem2 46090 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
363, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3733, 36mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3837simpld 494 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
39 elmapi 8776 . . . . . . . . . . . 12 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
413nnnn0d 12445 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
42 nn0uz 12777 . . . . . . . . . . . . 13 0 = (ℤ‘0)
4341, 42eleqtrdi 2838 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
44 eluzfz1 13434 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4543, 44syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
4640, 45ffvelcdmd 7019 . . . . . . . . . 10 (𝜑 → (𝑄‘0) ∈ ℝ)
4746rexrd 11165 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
48 1zzd 12506 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
49 0le1 11643 . . . . . . . . . . . . 13 0 ≤ 1
5049a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 1)
513nnge1d 12176 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑀)
522, 4, 48, 50, 51elfzd 13418 . . . . . . . . . . 11 (𝜑 → 1 ∈ (0...𝑀))
5340, 52ffvelcdmd 7019 . . . . . . . . . 10 (𝜑 → (𝑄‘1) ∈ ℝ)
5453rexrd 11165 . . . . . . . . 9 (𝜑 → (𝑄‘1) ∈ ℝ*)
5513rexrd 11165 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
5637simprd 495 . . . . . . . . . . 11 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
5756simplld 767 . . . . . . . . . 10 (𝜑 → (𝑄‘0) = 𝐴)
5813leidd 11686 . . . . . . . . . 10 (𝜑𝐴𝐴)
5957, 58eqbrtrd 5114 . . . . . . . . 9 (𝜑 → (𝑄‘0) ≤ 𝐴)
6057eqcomd 2735 . . . . . . . . . 10 (𝜑𝐴 = (𝑄‘0))
61 0re 11117 . . . . . . . . . . . . 13 0 ∈ ℝ
62 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
6362anbi2d 630 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
64 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
65 oveq1 7356 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
6665fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
6764, 66breq12d 5105 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
6863, 67imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
6937simprrd 773 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7069r19.21bi 3221 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7168, 70vtoclg 3509 . . . . . . . . . . . . 13 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
7261, 71ax-mp 5 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
737, 72mpdan 687 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
74 1e0p1 12633 . . . . . . . . . . . 12 1 = (0 + 1)
7574fveq2i 6825 . . . . . . . . . . 11 (𝑄‘1) = (𝑄‘(0 + 1))
7673, 75breqtrrdi 5134 . . . . . . . . . 10 (𝜑 → (𝑄‘0) < (𝑄‘1))
7760, 76eqbrtrd 5114 . . . . . . . . 9 (𝜑𝐴 < (𝑄‘1))
7847, 54, 55, 59, 77elicod 13298 . . . . . . . 8 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘1)))
7975oveq2i 7360 . . . . . . . 8 ((𝑄‘0)[,)(𝑄‘1)) = ((𝑄‘0)[,)(𝑄‘(0 + 1)))
8078, 79eleqtrdi 2838 . . . . . . 7 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8180adantr 480 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8232, 81eqeltrd 2828 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
83 fourierdlem48.e . . . . . . . . . . 11 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
8483a1i 11 . . . . . . . . . 10 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
85 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑋𝑥 = 𝑋)
86 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
8785, 86oveq12d 7367 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
8887adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
89 fourierdlem48.z . . . . . . . . . . . . . 14 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
9089a1i 11 . . . . . . . . . . . . 13 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
91 oveq2 7357 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
9291oveq1d 7364 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
9392fveq2d 6826 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
9493oveq1d 7364 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9594adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9621flcld 13702 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
9796zred 12580 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
9897, 15remulcld 11145 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
9990, 95, 10, 98fvmptd 6937 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
10099, 98eqeltrd 2828 . . . . . . . . . . 11 (𝜑 → (𝑍𝑋) ∈ ℝ)
10110, 100readdcld 11144 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
10284, 88, 10, 101fvmptd 6937 . . . . . . . . 9 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
10399oveq2d 7365 . . . . . . . . 9 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
104102, 103eqtrd 2764 . . . . . . . 8 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
105104oveq1d 7364 . . . . . . 7 (𝜑 → ((𝐸𝑋) − 𝑇) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇))
10610recnd 11143 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
10798recnd 11143 . . . . . . . 8 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
10815recnd 11143 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
109106, 107, 108addsubassd 11495 . . . . . . 7 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)))
11096zcnd 12581 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
111110, 108mulsubfacd 11581 . . . . . . . 8 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
112111oveq2d 7365 . . . . . . 7 (𝜑 → (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
113105, 109, 1123eqtrd 2768 . . . . . 6 (𝜑 → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
114113adantr 480 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
115 oveq1 7356 . . . . . . . . 9 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑘 · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
116115oveq2d 7365 . . . . . . . 8 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
117116eqeq2d 2740 . . . . . . 7 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))))
118117anbi2d 630 . . . . . 6 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))))
119118rspcev 3577 . . . . 5 ((((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ ∧ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12025, 82, 114, 119syl12anc 836 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12164, 66oveq12d 7367 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘0)[,)(𝑄‘(0 + 1))))
122121eleq2d 2814 . . . . . . 7 (𝑖 = 0 → (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1)))))
123122anbi1d 631 . . . . . 6 (𝑖 = 0 → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
124123rexbidv 3153 . . . . 5 (𝑖 = 0 → (∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
125124rspcev 3577 . . . 4 ((0 ∈ (0..^𝑀) ∧ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
1268, 120, 125syl2anc 584 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
127 ovex 7382 . . . 4 ((𝐸𝑋) − 𝑇) ∈ V
128 eleq1 2816 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
129 eqeq1 2733 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
130128, 129anbi12d 632 . . . . . . 7 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
1311302rexbidv 3194 . . . . . 6 (𝑦 = ((𝐸𝑋) − 𝑇) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
132131anbi2d 630 . . . . 5 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))))
133132imbi1d 341 . . . 4 (𝑦 = ((𝐸𝑋) − 𝑇) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
134 simpr 484 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
135 nfv 1914 . . . . . . 7 𝑖𝜑
136 nfre1 3254 . . . . . . 7 𝑖𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
137135, 136nfan 1899 . . . . . 6 𝑖(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
138 nfv 1914 . . . . . . 7 𝑘𝜑
139 nfcv 2891 . . . . . . . 8 𝑘(0..^𝑀)
140 nfre1 3254 . . . . . . . 8 𝑘𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
141139, 140nfrexw 3277 . . . . . . 7 𝑘𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
142138, 141nfan 1899 . . . . . 6 𝑘(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
143 simp1 1136 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝜑)
144 simp2l 1200 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑖 ∈ (0..^𝑀))
145 simp3l 1202 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
146143, 144, 145jca31 514 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
147 simp2r 1201 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
148 simp3r 1203 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 = (𝑋 + (𝑘 · 𝑇)))
149 fourierdlem48.ch . . . . . . . . . 10 (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
150149biimpi 216 . . . . . . . . . . . . . . . . 17 (𝜒 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
151150simplld 767 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
152151simplld 767 . . . . . . . . . . . . . . 15 (𝜒𝜑)
153 fourierdlem48.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐷⟶ℝ)
154 frel 6657 . . . . . . . . . . . . . . 15 (𝐹:𝐷⟶ℝ → Rel 𝐹)
155 resindm 5981 . . . . . . . . . . . . . . . 16 (Rel 𝐹 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑋(,)+∞)))
156155eqcomd 2735 . . . . . . . . . . . . . . 15 (Rel 𝐹 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
157152, 153, 154, 1564syl 19 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
158 fdm 6661 . . . . . . . . . . . . . . . . 17 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
159152, 153, 1583syl 18 . . . . . . . . . . . . . . . 16 (𝜒 → dom 𝐹 = 𝐷)
160159ineq2d 4171 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑋(,)+∞) ∩ dom 𝐹) = ((𝑋(,)+∞) ∩ 𝐷))
161160reseq2d 5930 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
162157, 161eqtrd 2764 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
163162oveq1d 7364 . . . . . . . . . . . 12 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
164152, 153syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:𝐷⟶ℝ)
165 ax-resscn 11066 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
166165a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → ℝ ⊆ ℂ)
167164, 166fssd 6669 . . . . . . . . . . . . . 14 (𝜒𝐹:𝐷⟶ℂ)
168 inss2 4189 . . . . . . . . . . . . . . 15 ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷
169168a1i 11 . . . . . . . . . . . . . 14 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷)
170167, 169fssresd 6691 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)):((𝑋(,)+∞) ∩ 𝐷)⟶ℂ)
171 pnfxr 11169 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
172171a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → +∞ ∈ ℝ*)
173151simplrd 769 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑖 ∈ (0..^𝑀))
17440adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
175 fzofzp1 13667 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
176175adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
177174, 176ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
178152, 173, 177syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ)
179150simplrd 769 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑘 ∈ ℤ)
180179zred 12580 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑘 ∈ ℝ)
181152, 15syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑇 ∈ ℝ)
182180, 181remulcld 11145 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑘 · 𝑇) ∈ ℝ)
183178, 182resubcld 11548 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
184183rexrd 11165 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
185183ltpnfd 13023 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) < +∞)
186184, 172, 185xrltled 13052 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞)
187 iooss2 13284 . . . . . . . . . . . . . . 15 ((+∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
188172, 186, 187syl2anc 584 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
189179adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
190189zcnd 12581 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℂ)
191181recnd 11143 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑇 ∈ ℂ)
192191adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℂ)
193190, 192mulneg1d 11573 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
194193oveq2d 7365 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
195 elioore 13278 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℝ)
196195recnd 11143 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
197196adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
198190, 192mulcld 11135 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
199197, 198addcld 11134 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
200199, 198negsubd 11481 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
201197, 198pncand 11476 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
202194, 200, 2013eqtrrd 2769 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
203152adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
204151simpld 494 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝜑𝑖 ∈ (0..^𝑀)))
205 fourierdlem48.cn . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
206 cncff 24784 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
207 fdm 6661 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
208205, 206, 2073syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
209 ssdmres 5964 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
210208, 209sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
211153, 158syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐹 = 𝐷)
212211adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
213210, 212sseqtrd 3972 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
214204, 213syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
215214adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
216 elfzofz 13578 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
217216adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
218174, 217ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
219152, 173, 218syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ∈ ℝ)
220219rexrd 11165 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ∈ ℝ*)
221220adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
222178rexrd 11165 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
223222adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
224195adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℝ)
225189zred 12580 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℝ)
226203, 15syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℝ)
227225, 226remulcld 11145 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
228224, 227readdcld 11144 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
229219adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
230152, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑋 ∈ ℝ)
231230, 182readdcld 11144 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
232231adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
233149simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑦 = (𝑋 + (𝑘 · 𝑇)))
234233eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑋 + (𝑘 · 𝑇)) = 𝑦)
235151simprd 495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
236234, 235eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
237 icogelb 13299 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
238220, 222, 236, 237syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
239238adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
240203, 10syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ)
241240rexrd 11165 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
242178adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
243242, 227resubcld 11548 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
244243rexrd 11165 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
245 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
246 ioogtlb 45476 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
247241, 244, 245, 246syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
248240, 224, 227, 247ltadd1dd 11731 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) < (𝑤 + (𝑘 · 𝑇)))
249229, 232, 228, 239, 248lelttrd 11274 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) < (𝑤 + (𝑘 · 𝑇)))
250 iooltub 45491 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
251241, 244, 245, 250syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
252224, 243, 227, 251ltadd1dd 11731 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
253178recnd 11143 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℂ)
254182recnd 11143 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 · 𝑇) ∈ ℂ)
255253, 254npcand 11479 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
256255adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
257252, 256breqtrd 5118 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (𝑄‘(𝑖 + 1)))
258221, 223, 228, 249, 257eliood 45479 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
259215, 258sseldd 3936 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
260189znegcld 12582 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -𝑘 ∈ ℤ)
261 ovex 7382 . . . . . . . . . . . . . . . . . . 19 (𝑤 + (𝑘 · 𝑇)) ∈ V
262 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥𝐷 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷))
2632623anbi2d 1443 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
264 oveq1 7356 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
265264eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
266263, 265imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
267 negex 11361 . . . . . . . . . . . . . . . . . . . 20 -𝑘 ∈ V
268 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑗 ∈ ℤ ↔ -𝑘 ∈ ℤ))
2692683anbi3d 1444 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ)))
270 oveq1 7356 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = -𝑘 → (𝑗 · 𝑇) = (-𝑘 · 𝑇))
271270oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑥 + (𝑗 · 𝑇)) = (𝑥 + (-𝑘 · 𝑇)))
272271eleq1d 2813 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷))
273269, 272imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)))
274 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑘 ∈ ℤ ↔ 𝑗 ∈ ℤ))
2752743anbi3d 1444 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷𝑗 ∈ ℤ)))
276 oveq1 7356 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
277276oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (𝑗 · 𝑇)))
278277eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷))
279275, 278imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)))
280 fourierdlem48.dper . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
281279, 280chvarvv 1989 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)
282267, 273, 281vtocl 3513 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
283261, 266, 282vtocl 3513 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
284203, 259, 260, 283syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
285202, 284eqeltrd 2828 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
286285ralrimiva 3121 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
287 dfss3 3924 . . . . . . . . . . . . . . 15 ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷 ↔ ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
288286, 287sylibr 234 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
289188, 288ssind 4192 . . . . . . . . . . . . 13 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ((𝑋(,)+∞) ∩ 𝐷))
290 ioosscn 13311 . . . . . . . . . . . . . 14 (𝑋(,)+∞) ⊆ ℂ
291 ssinss1 4197 . . . . . . . . . . . . . 14 ((𝑋(,)+∞) ⊆ ℂ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
292290, 291mp1i 13 . . . . . . . . . . . . 13 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
293 eqid 2729 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
294 eqid 2729 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
295230rexrd 11165 . . . . . . . . . . . . . . 15 (𝜒𝑋 ∈ ℝ*)
296230leidd 11686 . . . . . . . . . . . . . . 15 (𝜒𝑋𝑋)
297233oveq1d 7364 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
298230recnd 11143 . . . . . . . . . . . . . . . . . 18 (𝜒𝑋 ∈ ℂ)
299298, 254pncand 11476 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑋)
300297, 299eqtr2d 2765 . . . . . . . . . . . . . . . 16 (𝜒𝑋 = (𝑦 − (𝑘 · 𝑇)))
301 icossre 13331 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
302219, 222, 301syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
303302, 235sseldd 3936 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 ∈ ℝ)
304 icoltub 45489 . . . . . . . . . . . . . . . . . 18 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑦 < (𝑄‘(𝑖 + 1)))
305220, 222, 235, 304syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 < (𝑄‘(𝑖 + 1)))
306303, 178, 182, 305ltsub1dd 11732 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑦 − (𝑘 · 𝑇)) < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
307300, 306eqbrtrd 5114 . . . . . . . . . . . . . . 15 (𝜒𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
308295, 184, 295, 296, 307elicod 13298 . . . . . . . . . . . . . 14 (𝜒𝑋 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
309 snunioo1 45493 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
310295, 184, 307, 309syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
311310fveq2d 6826 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
312293cnfldtop 24669 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
313 ovex 7382 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ∈ V
314313inex1 5256 . . . . . . . . . . . . . . . . . . 19 ((𝑋(,)+∞) ∩ 𝐷) ∈ V
315 snex 5375 . . . . . . . . . . . . . . . . . . 19 {𝑋} ∈ V
316314, 315unex 7680 . . . . . . . . . . . . . . . . . 18 (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V
317 resttop 23045 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
318312, 316, 317mp2an 692 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top
319318a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
320 retop 24647 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) ∈ Top
321320a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (topGen‘ran (,)) ∈ Top)
322316a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V)
323 iooretop 24651 . . . . . . . . . . . . . . . . . . 19 (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))
324323a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,)))
325 elrestr 17332 . . . . . . . . . . . . . . . . . 18 (((topGen‘ran (,)) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))) → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
326321, 322, 324, 325syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜒 → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
327 mnfxr 11172 . . . . . . . . . . . . . . . . . . . . . 22 -∞ ∈ ℝ*
328327a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
329184adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
330 icossre 13331 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*) → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
331230, 184, 330syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
332331sselda 3935 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ℝ)
333332mnfltd 13026 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ < 𝑥)
334295adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
335 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
336 icoltub 45489 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
337334, 329, 335, 336syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
338328, 329, 332, 333, 337eliood 45479 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
339 vsnid 4615 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 ∈ {𝑥}
340339a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋𝑥 ∈ {𝑥})
341 sneq 4587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋 → {𝑥} = {𝑋})
342340, 341eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑋𝑥 ∈ {𝑋})
343 elun2 4134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
344342, 343syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑋𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
345344adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
346295ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
347171a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → +∞ ∈ ℝ*)
348332adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
349230ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
350 icogelb 13299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
351334, 329, 335, 350syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
352351adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
353 neqne 2933 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋𝑥𝑋)
354353adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
355349, 348, 352, 354leneltd 11270 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 < 𝑥)
356348ltpnfd 13023 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < +∞)
357346, 347, 348, 355, 356eliood 45479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
358179zcnd 12581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜒𝑘 ∈ ℂ)
359358, 191mulneg1d 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜒 → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
360359oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜒 → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
361360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
362 ioosscn 13311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ
363362sseli 3931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
364363adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
365254adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
366364, 365addcld 11134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
367366, 365negsubd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
368364, 365pncand 11476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
369361, 367, 3683eqtrrd 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
370182adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
371224, 370readdcld 11144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
372221, 223, 371, 249, 257eliood 45479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
373215, 372sseldd 3936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
3742683anbi3d 1444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
375270oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = -𝑘 → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
376375eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → (((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
377374, 376imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = -𝑘 → (((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
3782623anbi2d 1443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ)))
379 oveq1 7356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)))
380379eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷))
381378, 380imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)))
382261, 381, 281vtocl 3513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)
383267, 377, 382vtocl 3513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
384203, 373, 260, 383syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
385369, 384eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
386385ralrimiva 3121 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
387386, 287sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
388387ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
389184ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
390337adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
391346, 389, 348, 355, 390eliood 45479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
392388, 391sseldd 3936 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝐷)
393357, 392elind 4151 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
394 elun1 4133 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
395393, 394syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
396345, 395pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
397338, 396elind 4151 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
398295adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
399184adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
400 elinel1 4152 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
401 elioore 13278 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑥 ∈ ℝ)
402400, 401syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
403402rexrd 11165 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
404403adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
405 elinel2 4153 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
406230adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 ∈ ℝ)
40785eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋𝑋 = 𝑥)
408407adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 = 𝑥)
409406, 408eqled 11219 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 = 𝑋) → 𝑋𝑥)
410409adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 = 𝑋) → 𝑋𝑥)
411 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝜒)
412 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
413 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥 = 𝑋 → ¬ 𝑥 = 𝑋)
414 velsn 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋)
415413, 414sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋 → ¬ 𝑥 ∈ {𝑋})
416415adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → ¬ 𝑥 ∈ {𝑋})
417 elunnel2 4106 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
418412, 416, 417syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
419 elinel1 4152 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (𝑋(,)+∞))
420418, 419syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
421230adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ)
422 elioore 13278 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝑋(,)+∞) → 𝑥 ∈ ℝ)
423422adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ ℝ)
424295adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ*)
425171a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → +∞ ∈ ℝ*)
426 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ (𝑋(,)+∞))
427 ioogtlb 45476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
428424, 425, 426, 427syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
429421, 423, 428ltled 11264 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋𝑥)
430411, 420, 429syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
431410, 430pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑋𝑥)
432405, 431sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋𝑥)
433327a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
434184adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
435 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
436 iooltub 45491 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
437433, 434, 435, 436syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
438400, 437sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
439398, 399, 404, 432, 438elicod 13298 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
440397, 439impbida 800 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))))
441440eqrdv 2727 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
442 ioossre 13310 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ⊆ ℝ
443 ssinss1 4197 . . . . . . . . . . . . . . . . . . . 20 ((𝑋(,)+∞) ⊆ ℝ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
444442, 443mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
445230snssd 4760 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑋} ⊆ ℝ)
446444, 445unssd 4143 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
447 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = (topGen‘ran (,))
448293, 447rerest 24690 . . . . . . . . . . . . . . . . . 18 ((((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
449446, 448syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
450326, 441, 4493eltr4d 2843 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
451 isopn3i 22967 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
452319, 450, 451syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
453311, 452eqtr2d 2765 . . . . . . . . . . . . . 14 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
454308, 453eleqtrd 2830 . . . . . . . . . . . . 13 (𝜒𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
455170, 289, 292, 293, 294, 454limcres 25785 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
456289resabs1d 5959 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
457456oveq1d 7364 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
458165a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ⊆ ℂ)
459153, 458fssd 6669 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:𝐷⟶ℂ)
460211feq2d 6636 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
461459, 460mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:dom 𝐹⟶ℂ)
462152, 461syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐹:dom 𝐹⟶ℂ)
463462adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
464362a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ)
465387, 159sseqtrrd 3973 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
466465adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
467254adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑘 · 𝑇) ∈ ℂ)
468 eqid 2729 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
469 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (𝑘 · 𝑇))))
470469rexbidv 3153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
471470elrab 3648 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
472471simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
473472adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
474 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥𝜒
475 nfre1 3254 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))
476 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥
477475, 476nfrabw 3432 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
478477nfcri 2883 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
479474, 478nfan 1899 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
480 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 𝑤𝐷
481 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤 = (𝑥 + (𝑘 · 𝑇)))
482 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
483482anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ↔ (𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))))
484 oveq1 7356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
485484eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷))
486483, 485imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑥 → (((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)))
487486, 259chvarvv 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
4884873adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
489481, 488eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤𝐷)
4904893exp 1119 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
491490adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
492479, 480, 491rexlimd 3236 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷))
493473, 492mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → 𝑤𝐷)
494493ralrimiva 3121 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
495 dfss3 3924 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
496494, 495sylibr 234 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷)
497496, 159sseqtrrd 3973 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
498497adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
499152adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
500387sselda 3935 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥𝐷)
501179adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
502 fourierdlem48.per . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
503499, 500, 501, 502syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
504503adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) ∧ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
505 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
506463, 464, 466, 467, 468, 498, 504, 505limcperiod 45609 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))))
507255eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) = (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
508233, 507oveq12d 7367 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) = ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))))
509230, 183, 182iooshift 45503 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
510508, 509eqtr2d 2765 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = (𝑦(,)(𝑄‘(𝑖 + 1))))
511510reseq2d 5930 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
512511, 234oveq12d 7367 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
513512adantr 480 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
514506, 513eleqtrd 2830 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
515462adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝐹:dom 𝐹⟶ℂ)
516 ioosscn 13311 . . . . . . . . . . . . . . . . . 18 (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
517516a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
518 icogelb 13299 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑦)
519220, 222, 235, 518syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ≤ 𝑦)
520 iooss1 13283 . . . . . . . . . . . . . . . . . . . . 21 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄𝑖) ≤ 𝑦) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
521220, 519, 520syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
522521, 214sstrd 3946 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
523522, 159sseqtrrd 3973 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
524523adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
525358negcld 11462 . . . . . . . . . . . . . . . . . . 19 (𝜒 → -𝑘 ∈ ℂ)
526525, 191mulcld 11135 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-𝑘 · 𝑇) ∈ ℂ)
527526adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (-𝑘 · 𝑇) ∈ ℂ)
528 eqid 2729 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
529 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (-𝑘 · 𝑇))))
530529rexbidv 3153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
531530elrab 3648 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
532531simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
533532adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
534 nfre1 3254 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))
535534, 476nfrabw 3432 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
536535nfcri 2883 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
537474, 536nfan 1899 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
538 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤 = (𝑥 + (-𝑘 · 𝑇)))
539152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
540522sselda 3935 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
541179adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑘 ∈ ℤ)
542541znegcld 12582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
543539, 540, 542, 282syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
5445433adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
545538, 544eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤𝐷)
5465453exp 1119 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
547546adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
548537, 480, 547rexlimd 3236 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷))
549533, 548mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → 𝑤𝐷)
550549ralrimiva 3121 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
551 dfss3 3924 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
552550, 551sylibr 234 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷)
553552, 159sseqtrrd 3973 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
554553adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
555152ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
556540adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
557542adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
558271fveq2d 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹‘(𝑥 + (-𝑘 · 𝑇))))
559558eqeq1d 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → ((𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥)))
560269, 559imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))))
561277fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (𝑗 · 𝑇))))
562561eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)))
563275, 562imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))))
564563, 502chvarvv 1989 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))
565267, 560, 564vtocl 3513 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
566555, 556, 557, 565syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
567 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
568515, 517, 524, 527, 528, 554, 566, 567limcperiod 45609 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))))
569359oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = (𝑦 + -(𝑘 · 𝑇)))
570303recnd 11143 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ℂ)
571570, 254negsubd 11481 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + -(𝑘 · 𝑇)) = (𝑦 − (𝑘 · 𝑇)))
572300eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = 𝑋)
573569, 571, 5723eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
574573eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑋 = (𝑦 + (-𝑘 · 𝑇)))
575359oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)))
576253, 254negsubd 11481 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
577575, 576eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)))
578574, 577oveq12d 7367 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))))
579180renegcld 11547 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → -𝑘 ∈ ℝ)
580579, 181remulcld 11145 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (-𝑘 · 𝑇) ∈ ℝ)
581303, 178, 580iooshift 45503 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
582578, 581eqtr2d 2765 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
583582adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
584583reseq2d 5930 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
585573adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
586584, 585oveq12d 7367 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
587568, 586eleqtrd 2830 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
588514, 587impbida 800 . . . . . . . . . . . . . 14 (𝜒 → (𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) ↔ 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)))
589588eqrdv 2727 . . . . . . . . . . . . 13 (𝜒 → ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
590457, 589eqtrd 2764 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
591163, 455, 5903eqtr2d 2770 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
592152, 173, 70syl2anc 584 . . . . . . . . . . . . . 14 (𝜒 → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
593152, 173, 205syl2anc 584 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
594 fourierdlem48.r . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
595152, 173, 594syl2anc 584 . . . . . . . . . . . . . 14 (𝜒𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
596 eqid 2729 . . . . . . . . . . . . . 14 if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) = if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦))
597 eqid 2729 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
598219, 178, 592, 593, 595, 303, 178, 305, 521, 596, 597fourierdlem32 46120 . . . . . . . . . . . . 13 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
599521resabs1d 5959 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
600599oveq1d 7364 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
601598, 600eleqtrd 2830 . . . . . . . . . . . 12 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
602 ne0i 4292 . . . . . . . . . . . 12 (if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
603601, 602syl 17 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
604591, 603eqnetrd 2992 . . . . . . . . . 10 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
605149, 604sylbir 235 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
606146, 147, 148, 605syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6076063exp 1119 . . . . . . 7 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
608607adantr 480 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
609137, 142, 608rexlim2d 45606 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
610134, 609mpd 15 . . . 4 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
611127, 133, 610vtocl 3513 . . 3 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6121, 126, 611syl2anc 584 . 2 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
613 iocssre 13330 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
61455, 9, 613syl2anc 584 . . . . 5 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
615 ovex 7382 . . . . . . . . . . 11 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
61689fvmpt2 6941 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
617615, 616mpan2 691 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
618617oveq2d 7365 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
619618mpteq2ia 5187 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62083, 619eqtri 2752 . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62113, 9, 16, 12, 620fourierdlem4 46092 . . . . . 6 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
622621, 10ffvelcdmd 7019 . . . . 5 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
623614, 622sseldd 3936 . . . 4 (𝜑 → (𝐸𝑋) ∈ ℝ)
624623adantr 480 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝐸𝑋) ∈ ℝ)
625 simpl 482 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → 𝜑)
626 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
627 ffn 6652 . . . . . . . . . . . . . . 15 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
62840, 627syl 17 . . . . . . . . . . . . . 14 (𝜑𝑄 Fn (0...𝑀))
629628ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
630 fvelrnb 6883 . . . . . . . . . . . . 13 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
631629, 630syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
632626, 631mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
633 1zzd 12506 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
634 elfzelz 13427 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
635634ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
636635zred 12580 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
637 elfzle1 13430 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
638637ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
639 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
640639eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
641640ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
642 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
643642adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
64437simprld 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
645644simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑄‘0) = 𝐴)
646645ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
647641, 643, 6463eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
648647adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
649648adantllr 719 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
65013adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
65155adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
6529rexrd 11165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐵 ∈ ℝ*)
653652adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
654 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
655 iocgtlb 45483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
656651, 653, 654, 655syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
657650, 656gtned 11251 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
658657neneqd 2930 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
659658ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
660649, 659pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
661660neqned 2932 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
662636, 638, 661ne0gt0d 11253 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
663 0zd 12483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
664 zltp1le 12525 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
665663, 635, 664syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
666662, 665mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
66774, 666eqbrtrid 5127 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
668 eluz2 12741 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
669633, 635, 667, 668syl3anbrc 1344 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
670 nnuz 12778 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
671669, 670eleqtrrdi 2839 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
672 nnm1nn0 12425 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
673671, 672syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
674673, 42eleqtrdi 2838 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
6754ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
676 peano2zm 12518 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
677634, 676syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
678677zred 12580 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
679634zred 12580 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
680 elfzel2 13425 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
681680zred 12580 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
682679ltm1d 12057 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
683 elfzle2 13431 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
684678, 679, 681, 682, 683ltletrd 11276 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
685684ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
686 elfzo2 13565 . . . . . . . . . . . . . . . 16 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
687674, 675, 685, 686syl3anbrc 1344 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
68840ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
689635, 676syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
690673nn0ge0d 12448 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
691678, 681, 684ltled 11264 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
692691ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
693663, 675, 689, 690, 692elfzd 13418 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
694688, 693ffvelcdmd 7019 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
695694rexrd 11165 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
69640ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
697696rexrd 11165 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
698697adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
699698adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
700614sselda 3935 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
701700rexrd 11165 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
702701ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
703 simplll 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
704 ovex 7382 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 − 1) ∈ V
705 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
706705anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
707 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
708 oveq1 7356 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
709708fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
710707, 709breq12d 5105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
711706, 710imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
712704, 711, 70vtocl 3513 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
713703, 687, 712syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
714634zcnd 12581 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
715 1cnd 11110 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
716714, 715npcand 11479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
717716eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
718717fveq2d 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
719718eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
720719ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
721713, 720breqtrd 5118 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
722 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
723721, 722breqtrd 5118 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
724623leidd 11686 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
725724ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
726640adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
727725, 726breqtrd 5118 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
728727adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
729695, 699, 702, 723, 728eliocd 45488 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
730718oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
731730ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
732729, 731eleqtrd 2830 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
733707, 709oveq12d 7367 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
734733eleq2d 2814 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
735734rspcev 3577 . . . . . . . . . . . . . . 15 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
736687, 732, 735syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
737736ex 412 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
738737adantlr 715 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
739738rexlimdva 3130 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
740632, 739mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
7413ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
74240ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
743 iocssicc 13340 . . . . . . . . . . . . . . 15 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
744645eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
745644simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄𝑀) = 𝐵)
746745eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
747744, 746oveq12d 7367 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
748743, 747sseqtrid 3978 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
749748sselda 3935 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
750749adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
751 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
752 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
753752breq1d 5102 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
754753cbvrabv 3405 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
755754supeq1i 9337 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
756741, 742, 750, 751, 755fourierdlem25 46113 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
757 ioossioc 45473 . . . . . . . . . . . . . 14 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
758757sseli 3931 . . . . . . . . . . . . 13 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
759758a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
760759reximdva 3142 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
761756, 760mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
762740, 761pm2.61dan 812 . . . . . . . . 9 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
763622, 762mpdan 687 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
764 fveq2 6822 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
765 oveq1 7356 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
766765fveq2d 6826 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
767764, 766oveq12d 7367 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
768767eleq2d 2814 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
769768cbvrexvw 3208 . . . . . . . 8 (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
770763, 769sylib 218 . . . . . . 7 (𝜑 → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
771770adantr 480 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
772 elfzonn0 13610 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℕ0)
773 1nn0 12400 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
774773a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 1 ∈ ℕ0)
775772, 774nn0addcld 12449 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ ℕ0)
776775, 42eleqtrdi 2838 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (ℤ‘0))
777776adantr 480 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7787773ad2antl2 1187 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7794ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
7807793ad2antl1 1186 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
781772nn0red 12446 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
782781adantr 480 . . . . . . . . . . . . 13 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
7837823ad2antl2 1187 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
784 1red 11116 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 1 ∈ ℝ)
785783, 784readdcld 11144 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
786780zred 12580 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℝ)
787 elfzop1le2 13575 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ≤ 𝑀)
788787adantr 480 . . . . . . . . . . . 12 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
7897883ad2antl2 1187 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
790 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
791 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝑗 + 1) → (𝑄𝑀) = (𝑄‘(𝑗 + 1)))
792791eqcomd 2735 . . . . . . . . . . . . . . . . 17 (𝑀 = (𝑗 + 1) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
793792adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
794745ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄𝑀) = 𝐵)
795790, 793, 7943eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
796795adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
797 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) ≠ 𝐵)
798797neneqd 2930 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → ¬ (𝐸𝑋) = 𝐵)
799796, 798pm2.65da 816 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ¬ 𝑀 = (𝑗 + 1))
800799neqned 2932 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
8018003ad2antl1 1186 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
802785, 786, 789, 801leneltd 11270 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) < 𝑀)
803 elfzo2 13565 . . . . . . . . . 10 ((𝑗 + 1) ∈ (0..^𝑀) ↔ ((𝑗 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 + 1) < 𝑀))
804778, 780, 802, 803syl3anbrc 1344 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (0..^𝑀))
80540adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
806 fzofzp1 13667 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
807806adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
808805, 807ffvelcdmd 7019 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
809808rexrd 11165 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
810809adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8118103adant3 1132 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
812811adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
813 simpl1l 1225 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝜑)
814813, 40syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑄:(0...𝑀)⟶ℝ)
815 fzofzp1 13667 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ (0..^𝑀) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
816804, 815syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
817814, 816ffvelcdmd 7019 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ)
818817rexrd 11165 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ*)
819623rexrd 11165 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ ℝ*)
820819ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8218203ad2antl1 1186 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
822808leidd 11686 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
823822adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
824 id 22 . . . . . . . . . . . . . . 15 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
825824eqcomd 2735 . . . . . . . . . . . . . 14 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
826825adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
827823, 826breqtrd 5118 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
828827adantllr 719 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
8298283adantl3 1169 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
830 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
831 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
832 ovex 7382 . . . . . . . . . . . . . 14 (𝑗 + 1) ∈ V
833 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 + 1) ∈ (0..^𝑀)))
834833anbi2d 630 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀))))
835 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄𝑖) = (𝑄‘(𝑗 + 1)))
836 oveq1 7356 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 + 1) → (𝑖 + 1) = ((𝑗 + 1) + 1))
837836fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 + 1) + 1)))
838835, 837breq12d 5105 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1))))
839834, 838imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = (𝑗 + 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))))
840832, 839, 70vtocl 3513 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
841840adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
842831, 841eqbrtrd 5114 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
843813, 804, 830, 842syl21anc 837 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
844812, 818, 821, 829, 843elicod 13298 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
845835, 837oveq12d 7367 . . . . . . . . . . 11 (𝑖 = (𝑗 + 1) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
846845eleq2d 2814 . . . . . . . . . 10 (𝑖 = (𝑗 + 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))))
847846rspcev 3577 . . . . . . . . 9 (((𝑗 + 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
848804, 844, 847syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
849 simpl2 1193 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ (0..^𝑀))
850 id 22 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
8518503adant1r 1178 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
852 elfzofz 13578 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
853852adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
854805, 853ffvelcdmd 7019 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ)
855854rexrd 11165 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ*)
856855adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
8578563adantl3 1169 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
858809adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8598583adantl3 1169 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
860819adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8618603ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8628543adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ)
8636233ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ℝ)
8648553adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ*)
8658093adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
866 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
867 iocgtlb 45483 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
868864, 865, 866, 867syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
869862, 863, 868ltled 11264 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ≤ (𝐸𝑋))
870869adantr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ≤ (𝐸𝑋))
871863adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ)
872808adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
8738723adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
874 iocleub 45484 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
875864, 865, 866, 874syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
876875adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
877 neqne 2933 . . . . . . . . . . . . . 14 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) ≠ (𝑄‘(𝑗 + 1)))
878877necomd 2980 . . . . . . . . . . . . 13 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
879878adantl 481 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
880871, 873, 876, 879leneltd 11270 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘(𝑗 + 1)))
881857, 859, 861, 870, 880elicod 13298 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
882851, 881sylan 580 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
883764, 766oveq12d 7367 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
884883eleq2d 2814 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))))
885884rspcev 3577 . . . . . . . . 9 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
886849, 882, 885syl2anc 584 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
887848, 886pm2.61dan 812 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
888887rexlimdv3a 3134 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
889771, 888mpd 15 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
890 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
891 oveq1 7356 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
892891oveq2d 7365 . . . . . . . . . . . 12 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
893892eqeq2d 2740 . . . . . . . . . . 11 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
894893rspcev 3577 . . . . . . . . . 10 (((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ ∧ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
89596, 104, 894syl2anc 584 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
896895ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
897 r19.42v 3161 . . . . . . . 8 (∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
898890, 896, 897sylanbrc 583 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
899898ex 412 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
900899reximdv 3144 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
901889, 900mpd 15 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
902625, 901jca 511 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
903 eleq1 2816 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
904 eqeq1 2733 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
905903, 904anbi12d 632 . . . . . . 7 (𝑦 = (𝐸𝑋) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
9069052rexbidv 3194 . . . . . 6 (𝑦 = (𝐸𝑋) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
907906anbi2d 630 . . . . 5 (𝑦 = (𝐸𝑋) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))))
908907imbi1d 341 . . . 4 (𝑦 = (𝐸𝑋) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
909908, 610vtoclg 3509 . . 3 ((𝐸𝑋) ∈ ℝ → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
910624, 902, 909sylc 65 . 2 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
911612, 910pm2.61dane 3012 1 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cun 3901  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620  cres 5621  Rel wrel 5624   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  supcsup 9330  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  cuz 12735  (,)cioo 13248  (,]cioc 13249  [,)cico 13250  [,]cicc 13251  ...cfz 13410  ..^cfzo 13557  cfl 13694  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  Topctop 22778  intcnt 22902  cnccncf 24767   lim climc 25761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-ntr 22905  df-cn 23112  df-cnp 23113  df-xms 24206  df-ms 24207  df-cncf 24769  df-limc 25765
This theorem is referenced by:  fourierdlem94  46181  fourierdlem113  46200
  Copyright terms: Public domain W3C validator