Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem48 Structured version   Visualization version   GIF version

Theorem fourierdlem48 40847
Description: The given periodic function 𝐹 has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem48.a (𝜑𝐴 ∈ ℝ)
fourierdlem48.b (𝜑𝐵 ∈ ℝ)
fourierdlem48.altb (𝜑𝐴 < 𝐵)
fourierdlem48.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem48.t 𝑇 = (𝐵𝐴)
fourierdlem48.m (𝜑𝑀 ∈ ℕ)
fourierdlem48.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem48.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem48.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem48.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem48.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem48.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem48.x (𝜑𝑋 ∈ ℝ)
fourierdlem48.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem48.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
fourierdlem48.ch (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
Assertion
Ref Expression
fourierdlem48 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑘,𝑥   𝐵,𝑚,𝑝   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑦   𝑖,𝐹,𝑘,𝑥,𝑦   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑦,𝑀   𝑄,𝑖,𝑘,𝑥   𝑄,𝑝   𝑦,𝑄   𝑇,𝑖,𝑘,𝑥,𝑦   𝑖,𝑋,𝑘,𝑥,𝑦   𝑥,𝑍   𝜒,𝑥   𝜑,𝑖,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝜒(𝑦,𝑖,𝑘,𝑚,𝑝)   𝐴(𝑦,𝑘)   𝐵(𝑦)   𝐷(𝑦,𝑖,𝑚,𝑝)   𝑃(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑇(𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝑀(𝑥)   𝑋(𝑚,𝑝)   𝑍(𝑦,𝑖,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem48
Dummy variables 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 470 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝜑)
2 0zd 11651 . . . . . 6 (𝜑 → 0 ∈ ℤ)
3 fourierdlem48.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
43nnzd 11743 . . . . . 6 (𝜑𝑀 ∈ ℤ)
53nngt0d 11346 . . . . . 6 (𝜑 → 0 < 𝑀)
6 fzolb 12696 . . . . . 6 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
72, 4, 5, 6syl3anbrc 1436 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
87adantr 468 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 0 ∈ (0..^𝑀))
9 fourierdlem48.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
10 fourierdlem48.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
119, 10resubcld 10739 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ℝ)
12 fourierdlem48.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
13 fourierdlem48.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
149, 13resubcld 10739 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
1512, 14syl5eqel 2889 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
16 fourierdlem48.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
1713, 9posdifd 10895 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
1816, 17mpbid 223 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1918, 12syl6breqr 4886 . . . . . . . . . 10 (𝜑 → 0 < 𝑇)
2019gt0ne0d 10873 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
2111, 15, 20redivcld 11134 . . . . . . . 8 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2221adantr 468 . . . . . . 7 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2322flcld 12819 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
24 1zzd 11670 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 1 ∈ ℤ)
2523, 24zsubcld 11749 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ)
26 id 22 . . . . . . . 8 ((𝐸𝑋) = 𝐵 → (𝐸𝑋) = 𝐵)
2712a1i 11 . . . . . . . 8 ((𝐸𝑋) = 𝐵𝑇 = (𝐵𝐴))
2826, 27oveq12d 6888 . . . . . . 7 ((𝐸𝑋) = 𝐵 → ((𝐸𝑋) − 𝑇) = (𝐵 − (𝐵𝐴)))
299recnd 10349 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3013recnd 10349 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3129, 30nncand 10678 . . . . . . 7 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3228, 31sylan9eqr 2862 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = 𝐴)
33 fourierdlem48.q . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem48.p . . . . . . . . . . . . . . . 16 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
3534fourierdlem2 40802 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
363, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3733, 36mpbid 223 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3837simpld 484 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
39 elmapi 8110 . . . . . . . . . . . 12 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
413nnnn0d 11613 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
42 nn0uz 11936 . . . . . . . . . . . . 13 0 = (ℤ‘0)
4341, 42syl6eleq 2895 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
44 eluzfz1 12567 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4543, 44syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
4640, 45ffvelrnd 6578 . . . . . . . . . 10 (𝜑 → (𝑄‘0) ∈ ℝ)
4746rexrd 10370 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
48 1zzd 11670 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
492, 4, 483jca 1151 . . . . . . . . . . . . 13 (𝜑 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ∈ ℤ))
50 0le1 10832 . . . . . . . . . . . . . 14 0 ≤ 1
5150a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 1)
523nnge1d 11345 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑀)
5349, 51, 52jca32 507 . . . . . . . . . . . 12 (𝜑 → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
54 elfz2 12552 . . . . . . . . . . . 12 (1 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
5553, 54sylibr 225 . . . . . . . . . . 11 (𝜑 → 1 ∈ (0...𝑀))
5640, 55ffvelrnd 6578 . . . . . . . . . 10 (𝜑 → (𝑄‘1) ∈ ℝ)
5756rexrd 10370 . . . . . . . . 9 (𝜑 → (𝑄‘1) ∈ ℝ*)
5813rexrd 10370 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
5937simprd 485 . . . . . . . . . . 11 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
6059simplld 775 . . . . . . . . . 10 (𝜑 → (𝑄‘0) = 𝐴)
6113leidd 10875 . . . . . . . . . 10 (𝜑𝐴𝐴)
6260, 61eqbrtrd 4866 . . . . . . . . 9 (𝜑 → (𝑄‘0) ≤ 𝐴)
6360eqcomd 2812 . . . . . . . . . 10 (𝜑𝐴 = (𝑄‘0))
64 0re 10323 . . . . . . . . . . . . 13 0 ∈ ℝ
65 eleq1 2873 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
6665anbi2d 616 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
67 fveq2 6404 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
68 oveq1 6877 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
6968fveq2d 6408 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
7067, 69breq12d 4857 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
7166, 70imbi12d 335 . . . . . . . . . . . . . 14 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
7237simprrd 781 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7372r19.21bi 3120 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7471, 73vtoclg 3459 . . . . . . . . . . . . 13 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
7564, 74ax-mp 5 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
767, 75mpdan 670 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
77 1e0p1 11797 . . . . . . . . . . . 12 1 = (0 + 1)
7877fveq2i 6407 . . . . . . . . . . 11 (𝑄‘1) = (𝑄‘(0 + 1))
7976, 78syl6breqr 4886 . . . . . . . . . 10 (𝜑 → (𝑄‘0) < (𝑄‘1))
8063, 79eqbrtrd 4866 . . . . . . . . 9 (𝜑𝐴 < (𝑄‘1))
8147, 57, 58, 62, 80elicod 12438 . . . . . . . 8 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘1)))
8278oveq2i 6881 . . . . . . . 8 ((𝑄‘0)[,)(𝑄‘1)) = ((𝑄‘0)[,)(𝑄‘(0 + 1)))
8381, 82syl6eleq 2895 . . . . . . 7 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8483adantr 468 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8532, 84eqeltrd 2885 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
86 fourierdlem48.e . . . . . . . . . . 11 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
8786a1i 11 . . . . . . . . . 10 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
88 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑋𝑥 = 𝑋)
89 fveq2 6404 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
9088, 89oveq12d 6888 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
9190adantl 469 . . . . . . . . . 10 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
92 fourierdlem48.z . . . . . . . . . . . . . 14 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
9392a1i 11 . . . . . . . . . . . . 13 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
94 oveq2 6878 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
9594oveq1d 6885 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
9695fveq2d 6408 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
9796oveq1d 6885 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9897adantl 469 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9921flcld 12819 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
10099zred 11744 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
101100, 15remulcld 10351 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
10293, 98, 10, 101fvmptd 6505 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
103102, 101eqeltrd 2885 . . . . . . . . . . 11 (𝜑 → (𝑍𝑋) ∈ ℝ)
10410, 103readdcld 10350 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
10587, 91, 10, 104fvmptd 6505 . . . . . . . . 9 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
106102oveq2d 6886 . . . . . . . . 9 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
107105, 106eqtrd 2840 . . . . . . . 8 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
108107oveq1d 6885 . . . . . . 7 (𝜑 → ((𝐸𝑋) − 𝑇) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇))
10910recnd 10349 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
110101recnd 10349 . . . . . . . 8 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
11115recnd 10349 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
112109, 110, 111addsubassd 10693 . . . . . . 7 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)))
11399zcnd 11745 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
114113, 111mulsubfacd 10773 . . . . . . . 8 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
115114oveq2d 6886 . . . . . . 7 (𝜑 → (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
116108, 112, 1153eqtrd 2844 . . . . . 6 (𝜑 → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
117116adantr 468 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
118 oveq1 6877 . . . . . . . . 9 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑘 · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
119118oveq2d 6886 . . . . . . . 8 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
120119eqeq2d 2816 . . . . . . 7 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))))
121120anbi2d 616 . . . . . 6 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))))
122121rspcev 3502 . . . . 5 ((((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ ∧ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12325, 85, 117, 122syl12anc 856 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12467, 69oveq12d 6888 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘0)[,)(𝑄‘(0 + 1))))
125124eleq2d 2871 . . . . . . 7 (𝑖 = 0 → (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1)))))
126125anbi1d 617 . . . . . 6 (𝑖 = 0 → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
127126rexbidv 3240 . . . . 5 (𝑖 = 0 → (∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
128127rspcev 3502 . . . 4 ((0 ∈ (0..^𝑀) ∧ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
1298, 123, 128syl2anc 575 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
130 ovex 6902 . . . 4 ((𝐸𝑋) − 𝑇) ∈ V
131 eleq1 2873 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
132 eqeq1 2810 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
133131, 132anbi12d 618 . . . . . . 7 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
1341332rexbidv 3245 . . . . . 6 (𝑦 = ((𝐸𝑋) − 𝑇) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
135134anbi2d 616 . . . . 5 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))))
136135imbi1d 332 . . . 4 (𝑦 = ((𝐸𝑋) − 𝑇) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
137 simpr 473 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
138 nfv 2005 . . . . . . 7 𝑖𝜑
139 nfre1 3192 . . . . . . 7 𝑖𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
140138, 139nfan 1990 . . . . . 6 𝑖(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
141 nfv 2005 . . . . . . 7 𝑘𝜑
142 nfcv 2948 . . . . . . . 8 𝑘(0..^𝑀)
143 nfre1 3192 . . . . . . . 8 𝑘𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
144142, 143nfrex 3194 . . . . . . 7 𝑘𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
145141, 144nfan 1990 . . . . . 6 𝑘(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
146 simp1 1159 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝜑)
147 simp2l 1249 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑖 ∈ (0..^𝑀))
148 simp3l 1251 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
149146, 147, 148jca31 506 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
150 simp2r 1250 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
151 simp3r 1252 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 = (𝑋 + (𝑘 · 𝑇)))
152 fourierdlem48.ch . . . . . . . . . 10 (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
153152biimpi 207 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
154153simplld 775 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
155154simplld 775 . . . . . . . . . . . . . . . 16 (𝜒𝜑)
156 fourierdlem48.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐷⟶ℝ)
157 frel 6257 . . . . . . . . . . . . . . . 16 (𝐹:𝐷⟶ℝ → Rel 𝐹)
158155, 156, 1573syl 18 . . . . . . . . . . . . . . 15 (𝜒 → Rel 𝐹)
159 resindm 5649 . . . . . . . . . . . . . . . 16 (Rel 𝐹 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑋(,)+∞)))
160159eqcomd 2812 . . . . . . . . . . . . . . 15 (Rel 𝐹 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
161158, 160syl 17 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
162 fdm 6260 . . . . . . . . . . . . . . . . 17 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
163155, 156, 1623syl 18 . . . . . . . . . . . . . . . 16 (𝜒 → dom 𝐹 = 𝐷)
164163ineq2d 4013 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑋(,)+∞) ∩ dom 𝐹) = ((𝑋(,)+∞) ∩ 𝐷))
165164reseq2d 5597 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
166161, 165eqtrd 2840 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
167166oveq1d 6885 . . . . . . . . . . . 12 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
168155, 156syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:𝐷⟶ℝ)
169 ax-resscn 10274 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
170169a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → ℝ ⊆ ℂ)
171168, 170fssd 6266 . . . . . . . . . . . . . 14 (𝜒𝐹:𝐷⟶ℂ)
172 inss2 4030 . . . . . . . . . . . . . . 15 ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷
173172a1i 11 . . . . . . . . . . . . . 14 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷)
174171, 173fssresd 6282 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)):((𝑋(,)+∞) ∩ 𝐷)⟶ℂ)
175 pnfxr 10373 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
176175a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → +∞ ∈ ℝ*)
177154simplrd 777 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑖 ∈ (0..^𝑀))
17840adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
179 fzofzp1 12785 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
180179adantl 469 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
181178, 180ffvelrnd 6578 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
182155, 177, 181syl2anc 575 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ)
183153simplrd 777 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑘 ∈ ℤ)
184183zred 11744 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑘 ∈ ℝ)
185155, 15syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑇 ∈ ℝ)
186184, 185remulcld 10351 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑘 · 𝑇) ∈ ℝ)
187182, 186resubcld 10739 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
188187rexrd 10370 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
189187ltpnfd 12167 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) < +∞)
190188, 176, 189xrltled 12195 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞)
191 iooss2 12425 . . . . . . . . . . . . . . 15 ((+∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
192176, 190, 191syl2anc 575 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
193183adantr 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
194193zcnd 11745 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℂ)
195185recnd 10349 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑇 ∈ ℂ)
196195adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℂ)
197194, 196mulneg1d 10764 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
198197oveq2d 6886 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
199 elioore 12419 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℝ)
200199recnd 10349 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
201200adantl 469 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
202194, 196mulcld 10341 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
203201, 202addcld 10340 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
204203, 202negsubd 10679 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
205201, 202pncand 10674 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
206198, 204, 2053eqtrrd 2845 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
207155adantr 468 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
208154simpld 484 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝜑𝑖 ∈ (0..^𝑀)))
209 fourierdlem48.cn . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
210 cncff 22906 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
211 fdm 6260 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
212209, 210, 2113syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
213 ssdmres 5623 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
214212, 213sylibr 225 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
215156, 162syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐹 = 𝐷)
216215adantr 468 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
217214, 216sseqtrd 3838 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
218208, 217syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
219218adantr 468 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
220 elfzofz 12705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
221220adantl 469 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
222178, 221ffvelrnd 6578 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
223155, 177, 222syl2anc 575 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ∈ ℝ)
224223rexrd 10370 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ∈ ℝ*)
225224adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
226182rexrd 10370 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
227226adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
228199adantl 469 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℝ)
229193zred 11744 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℝ)
230207, 15syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℝ)
231229, 230remulcld 10351 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
232228, 231readdcld 10350 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
233223adantr 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
234155, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑋 ∈ ℝ)
235234, 186readdcld 10350 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
236235adantr 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
237152simprbi 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑦 = (𝑋 + (𝑘 · 𝑇)))
238237eqcomd 2812 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑋 + (𝑘 · 𝑇)) = 𝑦)
239154simprd 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
240238, 239eqeltrd 2885 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
241 icogelb 12439 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
242224, 226, 240, 241syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
243242adantr 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
244207, 10syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ)
245244rexrd 10370 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
246182adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
247246, 231resubcld 10739 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
248247rexrd 10370 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
249 simpr 473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
250 ioogtlb 40198 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
251245, 248, 249, 250syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
252244, 228, 231, 251ltadd1dd 10919 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) < (𝑤 + (𝑘 · 𝑇)))
253233, 236, 232, 243, 252lelttrd 10476 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) < (𝑤 + (𝑘 · 𝑇)))
254 iooltub 40214 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
255245, 248, 249, 254syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
256228, 247, 231, 255ltadd1dd 10919 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
257182recnd 10349 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℂ)
258186recnd 10349 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 · 𝑇) ∈ ℂ)
259257, 258npcand 10677 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
260259adantr 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
261256, 260breqtrd 4870 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (𝑄‘(𝑖 + 1)))
262225, 227, 232, 253, 261eliood 40201 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
263219, 262sseldd 3799 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
264193znegcld 11746 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -𝑘 ∈ ℤ)
265 ovex 6902 . . . . . . . . . . . . . . . . . . 19 (𝑤 + (𝑘 · 𝑇)) ∈ V
266 eleq1 2873 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥𝐷 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷))
2672663anbi2d 1558 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
268 oveq1 6877 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
269268eleq1d 2870 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
270267, 269imbi12d 335 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
271 negex 10560 . . . . . . . . . . . . . . . . . . . 20 -𝑘 ∈ V
272 eleq1 2873 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑗 ∈ ℤ ↔ -𝑘 ∈ ℤ))
2732723anbi3d 1559 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ)))
274 oveq1 6877 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = -𝑘 → (𝑗 · 𝑇) = (-𝑘 · 𝑇))
275274oveq2d 6886 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑥 + (𝑗 · 𝑇)) = (𝑥 + (-𝑘 · 𝑇)))
276275eleq1d 2870 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷))
277273, 276imbi12d 335 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)))
278 eleq1 2873 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑘 ∈ ℤ ↔ 𝑗 ∈ ℤ))
2792783anbi3d 1559 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷𝑗 ∈ ℤ)))
280 oveq1 6877 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
281280oveq2d 6886 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (𝑗 · 𝑇)))
282281eleq1d 2870 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷))
283279, 282imbi12d 335 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)))
284 fourierdlem48.dper . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
285283, 284chvarv 2437 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)
286271, 277, 285vtocl 3452 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
287265, 270, 286vtocl 3452 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
288207, 263, 264, 287syl3anc 1483 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
289206, 288eqeltrd 2885 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
290289ralrimiva 3154 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
291 dfss3 3787 . . . . . . . . . . . . . . 15 ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷 ↔ ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
292290, 291sylibr 225 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
293192, 292ssind 4033 . . . . . . . . . . . . 13 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ((𝑋(,)+∞) ∩ 𝐷))
294 ioosscn 40197 . . . . . . . . . . . . . 14 (𝑋(,)+∞) ⊆ ℂ
295 ssinss1 4038 . . . . . . . . . . . . . 14 ((𝑋(,)+∞) ⊆ ℂ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
296294, 295mp1i 13 . . . . . . . . . . . . 13 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
297 eqid 2806 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
298 eqid 2806 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
299234rexrd 10370 . . . . . . . . . . . . . . 15 (𝜒𝑋 ∈ ℝ*)
300234leidd 10875 . . . . . . . . . . . . . . 15 (𝜒𝑋𝑋)
301237oveq1d 6885 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
302234recnd 10349 . . . . . . . . . . . . . . . . . 18 (𝜒𝑋 ∈ ℂ)
303302, 258pncand 10674 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑋)
304301, 303eqtr2d 2841 . . . . . . . . . . . . . . . 16 (𝜒𝑋 = (𝑦 − (𝑘 · 𝑇)))
305 icossre 12468 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
306223, 226, 305syl2anc 575 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
307306, 239sseldd 3799 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 ∈ ℝ)
308 icoltub 40212 . . . . . . . . . . . . . . . . . 18 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑦 < (𝑄‘(𝑖 + 1)))
309224, 226, 239, 308syl3anc 1483 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 < (𝑄‘(𝑖 + 1)))
310307, 182, 186, 309ltsub1dd 10920 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑦 − (𝑘 · 𝑇)) < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
311304, 310eqbrtrd 4866 . . . . . . . . . . . . . . 15 (𝜒𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
312299, 188, 299, 300, 311elicod 12438 . . . . . . . . . . . . . 14 (𝜒𝑋 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
313 snunioo1 40216 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
314299, 188, 311, 313syl3anc 1483 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
315314fveq2d 6408 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
316297cnfldtop 22797 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
317 ovex 6902 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ∈ V
318317inex1 4994 . . . . . . . . . . . . . . . . . . 19 ((𝑋(,)+∞) ∩ 𝐷) ∈ V
319 snex 5098 . . . . . . . . . . . . . . . . . . 19 {𝑋} ∈ V
320318, 319unex 7182 . . . . . . . . . . . . . . . . . 18 (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V
321 resttop 21175 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
322316, 320, 321mp2an 675 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top
323322a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
324 retop 22775 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) ∈ Top
325324a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (topGen‘ran (,)) ∈ Top)
326320a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V)
327 iooretop 22779 . . . . . . . . . . . . . . . . . . 19 (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))
328327a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,)))
329 elrestr 16290 . . . . . . . . . . . . . . . . . 18 (((topGen‘ran (,)) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))) → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
330325, 326, 328, 329syl3anc 1483 . . . . . . . . . . . . . . . . 17 (𝜒 → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
331 mnfxr 10377 . . . . . . . . . . . . . . . . . . . . . 22 -∞ ∈ ℝ*
332331a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
333188adantr 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
334 icossre 12468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*) → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
335234, 188, 334syl2anc 575 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
336335sselda 3798 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ℝ)
337336mnfltd 12170 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ < 𝑥)
338299adantr 468 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
339 simpr 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
340 icoltub 40212 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
341338, 333, 339, 340syl3anc 1483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
342332, 333, 336, 337, 341eliood 40201 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
343 vsnid 4403 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 ∈ {𝑥}
344343a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋𝑥 ∈ {𝑥})
345 sneq 4380 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋 → {𝑥} = {𝑋})
346344, 345eleqtrd 2887 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑋𝑥 ∈ {𝑋})
347 elun2 3980 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
348346, 347syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑋𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
349348adantl 469 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
350299ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
351175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → +∞ ∈ ℝ*)
352336adantr 468 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
353234ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
354 icogelb 12439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
355338, 333, 339, 354syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
356355adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
357 neqne 2986 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋𝑥𝑋)
358357adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
359353, 352, 356, 358leneltd 10472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 < 𝑥)
360352ltpnfd 12167 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < +∞)
361350, 351, 352, 359, 360eliood 40201 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
362183zcnd 11745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜒𝑘 ∈ ℂ)
363362, 195mulneg1d 10764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜒 → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
364363oveq2d 6886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜒 → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
365364adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
366 ioosscn 40197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ
367366sseli 3794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
368367adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
369258adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
370368, 369addcld 10340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
371370, 369negsubd 10679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
372368, 369pncand 10674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
373365, 371, 3723eqtrrd 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
374186adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
375228, 374readdcld 10350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
376225, 227, 375, 253, 261eliood 40201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
377219, 376sseldd 3799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
3782723anbi3d 1559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
379274oveq2d 6886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = -𝑘 → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
380379eleq1d 2870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → (((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
381378, 380imbi12d 335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = -𝑘 → (((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
3822663anbi2d 1558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ)))
383 oveq1 6877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)))
384383eleq1d 2870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷))
385382, 384imbi12d 335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)))
386265, 385, 285vtocl 3452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)
387271, 381, 386vtocl 3452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
388207, 377, 264, 387syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
389373, 388eqeltrd 2885 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
390389ralrimiva 3154 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
391390, 291sylibr 225 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
392391ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
393188ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
394341adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
395350, 393, 352, 359, 394eliood 40201 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
396392, 395sseldd 3799 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝐷)
397361, 396elind 3997 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
398 elun1 3979 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
399397, 398syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
400349, 399pm2.61dan 838 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
401342, 400elind 3997 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
402299adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
403188adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
404 elinel1 3998 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
405 elioore 12419 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑥 ∈ ℝ)
406404, 405syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
407406rexrd 10370 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
408407adantl 469 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
409 elinel2 3999 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
410234adantr 468 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 ∈ ℝ)
41188eqcomd 2812 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋𝑋 = 𝑥)
412411adantl 469 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 = 𝑥)
413410, 412eqled 10421 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 = 𝑋) → 𝑋𝑥)
414413adantlr 697 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 = 𝑋) → 𝑋𝑥)
415 simpll 774 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝜒)
416 simplr 776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
417 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥 = 𝑋 → ¬ 𝑥 = 𝑋)
418 velsn 4386 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋)
419417, 418sylnibr 320 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋 → ¬ 𝑥 ∈ {𝑋})
420419adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → ¬ 𝑥 ∈ {𝑋})
421 elunnel2 39689 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
422416, 420, 421syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
423 elinel1 3998 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (𝑋(,)+∞))
424422, 423syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
425234adantr 468 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ)
426 elioore 12419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝑋(,)+∞) → 𝑥 ∈ ℝ)
427426adantl 469 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ ℝ)
428299adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ*)
429175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → +∞ ∈ ℝ*)
430 simpr 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ (𝑋(,)+∞))
431 ioogtlb 40198 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
432428, 429, 430, 431syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
433425, 427, 432ltled 10466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋𝑥)
434415, 424, 433syl2anc 575 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
435414, 434pm2.61dan 838 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑋𝑥)
436409, 435sylan2 582 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋𝑥)
437331a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
438188adantr 468 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
439 simpr 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
440 iooltub 40214 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
441437, 438, 439, 440syl3anc 1483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
442404, 441sylan2 582 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
443402, 403, 408, 436, 442elicod 12438 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
444401, 443impbida 826 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))))
445444eqrdv 2804 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
446 ioossre 12449 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ⊆ ℝ
447 ssinss1 4038 . . . . . . . . . . . . . . . . . . . 20 ((𝑋(,)+∞) ⊆ ℝ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
448446, 447mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
449234snssd 4530 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑋} ⊆ ℝ)
450448, 449unssd 3988 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
451 eqid 2806 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = (topGen‘ran (,))
452297, 451rerest 22817 . . . . . . . . . . . . . . . . . 18 ((((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
453450, 452syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
454330, 445, 4533eltr4d 2900 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
455 isopn3i 21097 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
456323, 454, 455syl2anc 575 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
457315, 456eqtr2d 2841 . . . . . . . . . . . . . 14 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
458312, 457eleqtrd 2887 . . . . . . . . . . . . 13 (𝜒𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
459174, 293, 296, 297, 298, 458limcres 23863 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
460293resabs1d 5631 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
461460oveq1d 6885 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
462169a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ⊆ ℂ)
463156, 462fssd 6266 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:𝐷⟶ℂ)
464215feq2d 6238 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
465463, 464mpbird 248 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:dom 𝐹⟶ℂ)
466155, 465syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐹:dom 𝐹⟶ℂ)
467466adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
468366a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ)
469391, 163sseqtr4d 3839 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
470469adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
471258adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑘 · 𝑇) ∈ ℂ)
472 eqid 2806 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
473 eqeq1 2810 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (𝑘 · 𝑇))))
474473rexbidv 3240 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
475474elrab 3559 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
476475simprbi 486 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
477476adantl 469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
478 nfv 2005 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥𝜒
479 nfre1 3192 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))
480 nfcv 2948 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥
481479, 480nfrab 3312 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
482481nfcri 2942 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
483478, 482nfan 1990 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
484 nfv 2005 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 𝑤𝐷
485 simp3 1161 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤 = (𝑥 + (𝑘 · 𝑇)))
486 eleq1 2873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
487486anbi2d 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ↔ (𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))))
488 oveq1 6877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
489488eleq1d 2870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷))
490487, 489imbi12d 335 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑥 → (((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)))
491490, 263chvarv 2437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
4924913adant3 1155 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
493485, 492eqeltrd 2885 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤𝐷)
4944933exp 1141 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
495494adantr 468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
496483, 484, 495rexlimd 3214 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷))
497477, 496mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → 𝑤𝐷)
498497ralrimiva 3154 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
499 dfss3 3787 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
500498, 499sylibr 225 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷)
501500, 163sseqtr4d 3839 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
502501adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
503155adantr 468 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
504391sselda 3798 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥𝐷)
505183adantr 468 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
506 fourierdlem48.per . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
507503, 504, 505, 506syl3anc 1483 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
508507adantlr 697 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) ∧ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
509 simpr 473 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
510467, 468, 470, 471, 472, 502, 508, 509limcperiod 40337 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))))
511259eqcomd 2812 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) = (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
512237, 511oveq12d 6888 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) = ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))))
513234, 187, 186iooshift 40226 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
514512, 513eqtr2d 2841 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = (𝑦(,)(𝑄‘(𝑖 + 1))))
515514reseq2d 5597 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
516515, 238oveq12d 6888 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
517516adantr 468 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
518510, 517eleqtrd 2887 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
519466adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝐹:dom 𝐹⟶ℂ)
520 ioosscn 40197 . . . . . . . . . . . . . . . . . 18 (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
521520a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
522 icogelb 12439 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑦)
523224, 226, 239, 522syl3anc 1483 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ≤ 𝑦)
524 iooss1 12424 . . . . . . . . . . . . . . . . . . . . 21 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄𝑖) ≤ 𝑦) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
525224, 523, 524syl2anc 575 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
526525, 218sstrd 3808 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
527526, 163sseqtr4d 3839 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
528527adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
529362negcld 10660 . . . . . . . . . . . . . . . . . . 19 (𝜒 → -𝑘 ∈ ℂ)
530529, 195mulcld 10341 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-𝑘 · 𝑇) ∈ ℂ)
531530adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (-𝑘 · 𝑇) ∈ ℂ)
532 eqid 2806 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
533 eqeq1 2810 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (-𝑘 · 𝑇))))
534533rexbidv 3240 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
535534elrab 3559 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
536535simprbi 486 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
537536adantl 469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
538 nfre1 3192 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))
539538, 480nfrab 3312 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
540539nfcri 2942 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
541478, 540nfan 1990 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
542 simp3 1161 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤 = (𝑥 + (-𝑘 · 𝑇)))
543155adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
544526sselda 3798 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
545183adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑘 ∈ ℤ)
546545znegcld 11746 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
547543, 544, 546, 286syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
5485473adant3 1155 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
549542, 548eqeltrd 2885 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤𝐷)
5505493exp 1141 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
551550adantr 468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
552541, 484, 551rexlimd 3214 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷))
553537, 552mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → 𝑤𝐷)
554553ralrimiva 3154 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
555 dfss3 3787 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
556554, 555sylibr 225 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷)
557556, 163sseqtr4d 3839 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
558557adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
559155ad2antrr 708 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
560544adantlr 697 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
561546adantlr 697 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
562275fveq2d 6408 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹‘(𝑥 + (-𝑘 · 𝑇))))
563562eqeq1d 2808 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → ((𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥)))
564273, 563imbi12d 335 . . . . . . . . . . . . . . . . . . 19 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))))
565281fveq2d 6408 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (𝑗 · 𝑇))))
566565eqeq1d 2808 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)))
567279, 566imbi12d 335 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))))
568567, 506chvarv 2437 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))
569271, 564, 568vtocl 3452 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
570559, 560, 561, 569syl3anc 1483 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
571 simpr 473 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
572519, 521, 528, 531, 532, 558, 570, 571limcperiod 40337 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))))
573363oveq2d 6886 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = (𝑦 + -(𝑘 · 𝑇)))
574307recnd 10349 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ℂ)
575574, 258negsubd 10679 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + -(𝑘 · 𝑇)) = (𝑦 − (𝑘 · 𝑇)))
576304eqcomd 2812 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = 𝑋)
577573, 575, 5763eqtrd 2844 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
578577eqcomd 2812 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑋 = (𝑦 + (-𝑘 · 𝑇)))
579363oveq2d 6886 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)))
580257, 258negsubd 10679 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
581579, 580eqtr2d 2841 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)))
582578, 581oveq12d 6888 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))))
583184renegcld 10738 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → -𝑘 ∈ ℝ)
584583, 185remulcld 10351 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (-𝑘 · 𝑇) ∈ ℝ)
585307, 182, 584iooshift 40226 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
586582, 585eqtr2d 2841 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
587586adantr 468 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
588587reseq2d 5597 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
589577adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
590588, 589oveq12d 6888 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
591572, 590eleqtrd 2887 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
592518, 591impbida 826 . . . . . . . . . . . . . 14 (𝜒 → (𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) ↔ 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)))
593592eqrdv 2804 . . . . . . . . . . . . 13 (𝜒 → ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
594461, 593eqtrd 2840 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
595167, 459, 5943eqtr2d 2846 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
596155, 177, 73syl2anc 575 . . . . . . . . . . . . . 14 (𝜒 → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
597155, 177, 209syl2anc 575 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
598 fourierdlem48.r . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
599155, 177, 598syl2anc 575 . . . . . . . . . . . . . 14 (𝜒𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
600 eqid 2806 . . . . . . . . . . . . . 14 if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) = if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦))
601 eqid 2806 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
602223, 182, 596, 597, 599, 307, 182, 309, 525, 600, 601fourierdlem32 40832 . . . . . . . . . . . . 13 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
603525resabs1d 5631 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
604603oveq1d 6885 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
605602, 604eleqtrd 2887 . . . . . . . . . . . 12 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
606 ne0i 4122 . . . . . . . . . . . 12 (if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
607605, 606syl 17 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
608595, 607eqnetrd 3045 . . . . . . . . . 10 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
609152, 608sylbir 226 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
610149, 150, 151, 609syl21anc 857 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6116103exp 1141 . . . . . . 7 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
612611adantr 468 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
613140, 145, 612rexlim2d 40334 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
614137, 613mpd 15 . . . 4 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
615130, 136, 614vtocl 3452 . . 3 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6161, 129, 615syl2anc 575 . 2 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
617 iocssre 12467 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
61858, 9, 617syl2anc 575 . . . . 5 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
619 ovex 6902 . . . . . . . . . . 11 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
62092fvmpt2 6508 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
621619, 620mpan2 674 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
622621oveq2d 6886 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
623622mpteq2ia 4934 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62486, 623eqtri 2828 . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62513, 9, 16, 12, 624fourierdlem4 40804 . . . . . 6 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
626625, 10ffvelrnd 6578 . . . . 5 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
627618, 626sseldd 3799 . . . 4 (𝜑 → (𝐸𝑋) ∈ ℝ)
628627adantr 468 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝐸𝑋) ∈ ℝ)
629 simpl 470 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → 𝜑)
630 simpr 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
631 ffn 6252 . . . . . . . . . . . . . . 15 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
63240, 631syl 17 . . . . . . . . . . . . . 14 (𝜑𝑄 Fn (0...𝑀))
633632ad2antrr 708 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
634 fvelrnb 6460 . . . . . . . . . . . . 13 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
635633, 634syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
636630, 635mpbid 223 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
637 1zzd 11670 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
638 elfzelz 12561 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
639638ad2antlr 709 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
640639zred 11744 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
641 elfzle1 12563 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
642641ad2antlr 709 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
643 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
644643eqcomd 2812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
645644ad2antlr 709 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
646 fveq2 6404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
647646adantl 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
64837simprld 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
649648simpld 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑄‘0) = 𝐴)
650649ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
651645, 647, 6503eqtrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
652651adantllr 701 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
653652adantllr 701 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
65413adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
65558adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
6569rexrd 10370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐵 ∈ ℝ*)
657656adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
658 simpr 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
659 iocgtlb 40205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
660655, 657, 658, 659syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
661654, 660gtned 10453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
662661neneqd 2983 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
663662ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
664653, 663pm2.65da 842 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
665664neqned 2985 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
666640, 642, 665ne0gt0d 10455 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
667 0zd 11651 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
668 zltp1le 11689 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
669667, 639, 668syl2anc 575 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
670666, 669mpbid 223 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
67177, 670syl5eqbr 4879 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
672 eluz2 11906 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
673637, 639, 671, 672syl3anbrc 1436 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
674 nnuz 11937 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
675673, 674syl6eleqr 2896 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
676 nnm1nn0 11596 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
677675, 676syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
678677, 42syl6eleq 2895 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
6794ad3antrrr 712 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
680 peano2zm 11682 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
681638, 680syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
682681zred 11744 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
683638zred 11744 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
684 elfzel2 12559 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
685684zred 11744 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
686683ltm1d 11237 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
687 elfzle2 12564 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
688682, 683, 685, 686, 687ltletrd 10478 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
689688ad2antlr 709 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
690 elfzo2 12693 . . . . . . . . . . . . . . . 16 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
691678, 679, 689, 690syl3anbrc 1436 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
69240ad3antrrr 712 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
693639, 680syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
694667, 679, 6933jca 1151 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ))
695677nn0ge0d 11616 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
696682, 685, 688ltled 10466 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
697696ad2antlr 709 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
698694, 695, 697jca32 507 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) ∧ (0 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑀)))
699 elfz2 12552 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 − 1) ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) ∧ (0 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑀)))
700698, 699sylibr 225 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
701692, 700ffvelrnd 6578 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
702701rexrd 10370 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
70340ffvelrnda 6577 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
704703rexrd 10370 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
705704adantlr 697 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
706705adantr 468 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
707618sselda 3798 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
708707rexrd 10370 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
709708ad2antrr 708 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
710 simplll 782 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
711 ovex 6902 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 − 1) ∈ V
712 eleq1 2873 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
713712anbi2d 616 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
714 fveq2 6404 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
715 oveq1 6877 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
716715fveq2d 6408 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
717714, 716breq12d 4857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
718713, 717imbi12d 335 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
719711, 718, 73vtocl 3452 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
720710, 691, 719syl2anc 575 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
721638zcnd 11745 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
722 1cnd 10316 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
723721, 722npcand 10677 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
724723eqcomd 2812 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
725724fveq2d 6408 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
726725eqcomd 2812 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
727726ad2antlr 709 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
728720, 727breqtrd 4870 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
729 simpr 473 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
730728, 729breqtrd 4870 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
731627leidd 10875 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
732731ad2antrr 708 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
733644adantl 469 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
734732, 733breqtrd 4870 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
735734adantllr 701 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
736702, 706, 709, 730, 735eliocd 40211 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
737725oveq2d 6886 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
738737ad2antlr 709 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
739736, 738eleqtrd 2887 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
740714, 716oveq12d 6888 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
741740eleq2d 2871 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
742741rspcev 3502 . . . . . . . . . . . . . . 15 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
743691, 739, 742syl2anc 575 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
744743ex 399 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
745744adantlr 697 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
746745rexlimdva 3219 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
747636, 746mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
7483ad2antrr 708 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
74940ad2antrr 708 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
750 iocssicc 12476 . . . . . . . . . . . . . . 15 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
751649eqcomd 2812 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
752648simprd 485 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄𝑀) = 𝐵)
753752eqcomd 2812 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
754751, 753oveq12d 6888 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
755750, 754syl5sseq 3850 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
756755sselda 3798 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
757756adantr 468 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
758 simpr 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
759 fveq2 6404 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
760759breq1d 4854 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
761760cbvrabv 3389 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
762761supeq1i 8588 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
763748, 749, 757, 758, 762fourierdlem25 40825 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
764 ioossioc 40194 . . . . . . . . . . . . . 14 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
765764sseli 3794 . . . . . . . . . . . . 13 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
766765a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
767766reximdva 3204 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
768763, 767mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
769747, 768pm2.61dan 838 . . . . . . . . 9 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
770626, 769mpdan 670 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
771 fveq2 6404 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
772 oveq1 6877 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
773772fveq2d 6408 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
774771, 773oveq12d 6888 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
775774eleq2d 2871 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
776775cbvrexv 3361 . . . . . . . 8 (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
777770, 776sylib 209 . . . . . . 7 (𝜑 → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
778777adantr 468 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
779 elfzonn0 12733 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℕ0)
780 1nn0 11571 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
781780a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 1 ∈ ℕ0)
782779, 781nn0addcld 11617 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ ℕ0)
783782, 42syl6eleq 2895 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (ℤ‘0))
784783adantr 468 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7857843ad2antl2 1230 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7864ad2antrr 708 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
7877863ad2antl1 1229 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
788779nn0red 11614 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
789788adantr 468 . . . . . . . . . . . . 13 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
7907893ad2antl2 1230 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
791 1red 10322 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 1 ∈ ℝ)
792790, 791readdcld 10350 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
793787zred 11744 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℝ)
794 elfzop1le2 39981 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ≤ 𝑀)
795794adantr 468 . . . . . . . . . . . 12 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
7967953ad2antl2 1230 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
797 simplr 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
798 fveq2 6404 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝑗 + 1) → (𝑄𝑀) = (𝑄‘(𝑗 + 1)))
799798eqcomd 2812 . . . . . . . . . . . . . . . . 17 (𝑀 = (𝑗 + 1) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
800799adantl 469 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
801752ad2antrr 708 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄𝑀) = 𝐵)
802797, 800, 8013eqtrd 2844 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
803802adantllr 701 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
804 simpllr 784 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) ≠ 𝐵)
805804neneqd 2983 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → ¬ (𝐸𝑋) = 𝐵)
806803, 805pm2.65da 842 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ¬ 𝑀 = (𝑗 + 1))
807806neqned 2985 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
8088073ad2antl1 1229 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
809792, 793, 796, 808leneltd 10472 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) < 𝑀)
810 elfzo2 12693 . . . . . . . . . 10 ((𝑗 + 1) ∈ (0..^𝑀) ↔ ((𝑗 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 + 1) < 𝑀))
811785, 787, 809, 810syl3anbrc 1436 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (0..^𝑀))
81240adantr 468 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
813 fzofzp1 12785 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
814813adantl 469 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
815812, 814ffvelrnd 6578 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
816815rexrd 10370 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
817816adantlr 697 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8188173adant3 1155 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
819818adantr 468 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
820 simpl1l 1286 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝜑)
821820, 40syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑄:(0...𝑀)⟶ℝ)
822 fzofzp1 12785 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ (0..^𝑀) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
823811, 822syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
824821, 823ffvelrnd 6578 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ)
825824rexrd 10370 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ*)
826627rexrd 10370 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ ℝ*)
827826ad2antrr 708 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8288273ad2antl1 1229 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
829815leidd 10875 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
830829adantr 468 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
831 id 22 . . . . . . . . . . . . . . 15 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
832831eqcomd 2812 . . . . . . . . . . . . . 14 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
833832adantl 469 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
834830, 833breqtrd 4870 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
835834adantllr 701 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
8368353adantl3 1202 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
837 simpr 473 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
838 simpr 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
839 ovex 6902 . . . . . . . . . . . . . 14 (𝑗 + 1) ∈ V
840 eleq1 2873 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 + 1) ∈ (0..^𝑀)))
841840anbi2d 616 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀))))
842 fveq2 6404 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄𝑖) = (𝑄‘(𝑗 + 1)))
843 oveq1 6877 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 + 1) → (𝑖 + 1) = ((𝑗 + 1) + 1))
844843fveq2d 6408 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 + 1) + 1)))
845842, 844breq12d 4857 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1))))
846841, 845imbi12d 335 . . . . . . . . . . . . . 14 (𝑖 = (𝑗 + 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))))
847839, 846, 73vtocl 3452 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
848847adantr 468 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
849838, 848eqbrtrd 4866 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
850820, 811, 837, 849syl21anc 857 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
851819, 825, 828, 836, 850elicod 12438 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
852842, 844oveq12d 6888 . . . . . . . . . . 11 (𝑖 = (𝑗 + 1) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
853852eleq2d 2871 . . . . . . . . . 10 (𝑖 = (𝑗 + 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))))
854853rspcev 3502 . . . . . . . . 9 (((𝑗 + 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
855811, 851, 854syl2anc 575 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
856 simpl2 1237 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ (0..^𝑀))
857 id 22 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
8588573adant1r 1216 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
859 elfzofz 12705 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
860859adantl 469 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
861812, 860ffvelrnd 6578 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ)
862861rexrd 10370 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ*)
863862adantr 468 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
8648633adantl3 1202 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
865816adantr 468 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8668653adantl3 1202 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
867826adantr 468 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8688673ad2antl1 1229 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8698613adant3 1155 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ)
8706273ad2ant1 1156 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ℝ)
8718623adant3 1155 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ*)
8728163adant3 1155 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
873 simp3 1161 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
874 iocgtlb 40205 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
875871, 872, 873, 874syl3anc 1483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
876869, 870, 875ltled 10466 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ≤ (𝐸𝑋))
877876adantr 468 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ≤ (𝐸𝑋))
878870adantr 468 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ)
879815adantr 468 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
8808793adantl3 1202 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
881 iocleub 40206 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
882871, 872, 873, 881syl3anc 1483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
883882adantr 468 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
884 neqne 2986 . . . . . . . . . . . . . 14 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) ≠ (𝑄‘(𝑗 + 1)))
885884necomd 3033 . . . . . . . . . . . . 13 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
886885adantl 469 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
887878, 880, 883, 886leneltd 10472 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘(𝑗 + 1)))
888864, 866, 868, 877, 887elicod 12438 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
889858, 888sylan 571 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
890771, 773oveq12d 6888 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
891890eleq2d 2871 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))))
892891rspcev 3502 . . . . . . . . 9 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
893856, 889, 892syl2anc 575 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
894855, 893pm2.61dan 838 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
895894rexlimdv3a 3221 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
896778, 895mpd 15 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
897 simpr 473 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
898 oveq1 6877 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
899898oveq2d 6886 . . . . . . . . . . . 12 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
900899eqeq2d 2816 . . . . . . . . . . 11 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
901900rspcev 3502 . . . . . . . . . 10 (((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ ∧ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
90299, 107, 901syl2anc 575 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
903902ad2antrr 708 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
904 r19.42v 3280 . . . . . . . 8 (∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
905897, 903, 904sylanbrc 574 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
906905ex 399 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
907906reximdv 3203 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
908896, 907mpd 15 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
909629, 908jca 503 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
910 eleq1 2873 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
911 eqeq1 2810 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
912910, 911anbi12d 618 . . . . . . 7 (𝑦 = (𝐸𝑋) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
9139122rexbidv 3245 . . . . . 6 (𝑦 = (𝐸𝑋) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
914913anbi2d 616 . . . . 5 (𝑦 = (𝐸𝑋) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))))
915914imbi1d 332 . . . 4 (𝑦 = (𝐸𝑋) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
916915, 614vtoclg 3459 . . 3 ((𝐸𝑋) ∈ ℝ → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
917628, 909, 916sylc 65 . 2 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
918616, 917pm2.61dane 3065 1 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wral 3096  wrex 3097  {crab 3100  Vcvv 3391  cun 3767  cin 3768  wss 3769  c0 4116  ifcif 4279  {csn 4370   class class class wbr 4844  cmpt 4923  dom cdm 5311  ran crn 5312  cres 5313  Rel wrel 5316   Fn wfn 6092  wf 6093  cfv 6097  (class class class)co 6870  𝑚 cmap 8088  supcsup 8581  cc 10215  cr 10216  0cc0 10217  1c1 10218   + caddc 10220   · cmul 10222  +∞cpnf 10352  -∞cmnf 10353  *cxr 10354   < clt 10355  cle 10356  cmin 10547  -cneg 10548   / cdiv 10965  cn 11301  0cn0 11555  cz 11639  cuz 11900  (,)cioo 12389  (,]cioc 12390  [,)cico 12391  [,]cicc 12392  ...cfz 12545  ..^cfzo 12685  cfl 12811  t crest 16282  TopOpenctopn 16283  topGenctg 16299  fldccnfld 19950  Topctop 20908  intcnt 21032  cnccncf 22889   lim climc 23839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-oadd 7796  df-er 7975  df-map 8090  df-pm 8091  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-fi 8552  df-sup 8583  df-inf 8584  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-z 11640  df-dec 11756  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12546  df-fzo 12686  df-fl 12813  df-seq 13021  df-exp 13080  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16171  df-unif 16172  df-rest 16284  df-topn 16285  df-topgen 16305  df-psmet 19942  df-xmet 19943  df-met 19944  df-bl 19945  df-mopn 19946  df-cnfld 19951  df-top 20909  df-topon 20926  df-topsp 20948  df-bases 20961  df-ntr 21035  df-cn 21242  df-cnp 21243  df-xms 22335  df-ms 22336  df-cncf 22891  df-limc 23843
This theorem is referenced by:  fourierdlem94  40893  fourierdlem113  40912
  Copyright terms: Public domain W3C validator