Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem48 Structured version   Visualization version   GIF version

Theorem fourierdlem48 46075
Description: The given periodic function 𝐹 has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem48.a (𝜑𝐴 ∈ ℝ)
fourierdlem48.b (𝜑𝐵 ∈ ℝ)
fourierdlem48.altb (𝜑𝐴 < 𝐵)
fourierdlem48.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem48.t 𝑇 = (𝐵𝐴)
fourierdlem48.m (𝜑𝑀 ∈ ℕ)
fourierdlem48.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem48.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem48.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem48.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem48.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem48.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem48.x (𝜑𝑋 ∈ ℝ)
fourierdlem48.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem48.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
fourierdlem48.ch (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
Assertion
Ref Expression
fourierdlem48 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑘,𝑥   𝐵,𝑚,𝑝   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑦   𝑖,𝐹,𝑘,𝑥,𝑦   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑦,𝑀   𝑄,𝑖,𝑘,𝑥   𝑄,𝑝   𝑦,𝑄   𝑇,𝑖,𝑘,𝑥,𝑦   𝑖,𝑋,𝑘,𝑥,𝑦   𝑥,𝑍   𝜒,𝑥   𝜑,𝑖,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝜒(𝑦,𝑖,𝑘,𝑚,𝑝)   𝐴(𝑦,𝑘)   𝐵(𝑦)   𝐷(𝑦,𝑖,𝑚,𝑝)   𝑃(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑇(𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝑀(𝑥)   𝑋(𝑚,𝑝)   𝑍(𝑦,𝑖,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem48
Dummy variables 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝜑)
2 0zd 12651 . . . . . 6 (𝜑 → 0 ∈ ℤ)
3 fourierdlem48.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
43nnzd 12666 . . . . . 6 (𝜑𝑀 ∈ ℤ)
53nngt0d 12342 . . . . . 6 (𝜑 → 0 < 𝑀)
6 fzolb 13722 . . . . . 6 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
72, 4, 5, 6syl3anbrc 1343 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
87adantr 480 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 0 ∈ (0..^𝑀))
9 fourierdlem48.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
10 fourierdlem48.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
119, 10resubcld 11718 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ℝ)
12 fourierdlem48.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
13 fourierdlem48.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
149, 13resubcld 11718 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
1512, 14eqeltrid 2848 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
16 fourierdlem48.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
1713, 9posdifd 11877 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
1816, 17mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1918, 12breqtrrdi 5208 . . . . . . . . . 10 (𝜑 → 0 < 𝑇)
2019gt0ne0d 11854 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
2111, 15, 20redivcld 12122 . . . . . . . 8 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2322flcld 13849 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
24 1zzd 12674 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 1 ∈ ℤ)
2523, 24zsubcld 12752 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ)
26 id 22 . . . . . . . 8 ((𝐸𝑋) = 𝐵 → (𝐸𝑋) = 𝐵)
2712a1i 11 . . . . . . . 8 ((𝐸𝑋) = 𝐵𝑇 = (𝐵𝐴))
2826, 27oveq12d 7466 . . . . . . 7 ((𝐸𝑋) = 𝐵 → ((𝐸𝑋) − 𝑇) = (𝐵 − (𝐵𝐴)))
299recnd 11318 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3013recnd 11318 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3129, 30nncand 11652 . . . . . . 7 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3228, 31sylan9eqr 2802 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = 𝐴)
33 fourierdlem48.q . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem48.p . . . . . . . . . . . . . . . 16 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
3534fourierdlem2 46030 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
363, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3733, 36mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3837simpld 494 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
39 elmapi 8907 . . . . . . . . . . . 12 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
413nnnn0d 12613 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
42 nn0uz 12945 . . . . . . . . . . . . 13 0 = (ℤ‘0)
4341, 42eleqtrdi 2854 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
44 eluzfz1 13591 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4543, 44syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
4640, 45ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝑄‘0) ∈ ℝ)
4746rexrd 11340 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
48 1zzd 12674 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
49 0le1 11813 . . . . . . . . . . . . 13 0 ≤ 1
5049a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 1)
513nnge1d 12341 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑀)
522, 4, 48, 50, 51elfzd 13575 . . . . . . . . . . 11 (𝜑 → 1 ∈ (0...𝑀))
5340, 52ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝑄‘1) ∈ ℝ)
5453rexrd 11340 . . . . . . . . 9 (𝜑 → (𝑄‘1) ∈ ℝ*)
5513rexrd 11340 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
5637simprd 495 . . . . . . . . . . 11 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
5756simplld 767 . . . . . . . . . 10 (𝜑 → (𝑄‘0) = 𝐴)
5813leidd 11856 . . . . . . . . . 10 (𝜑𝐴𝐴)
5957, 58eqbrtrd 5188 . . . . . . . . 9 (𝜑 → (𝑄‘0) ≤ 𝐴)
6057eqcomd 2746 . . . . . . . . . 10 (𝜑𝐴 = (𝑄‘0))
61 0re 11292 . . . . . . . . . . . . 13 0 ∈ ℝ
62 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
6362anbi2d 629 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
64 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
65 oveq1 7455 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
6665fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
6764, 66breq12d 5179 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
6863, 67imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
6937simprrd 773 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7069r19.21bi 3257 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7168, 70vtoclg 3566 . . . . . . . . . . . . 13 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
7261, 71ax-mp 5 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
737, 72mpdan 686 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
74 1e0p1 12800 . . . . . . . . . . . 12 1 = (0 + 1)
7574fveq2i 6923 . . . . . . . . . . 11 (𝑄‘1) = (𝑄‘(0 + 1))
7673, 75breqtrrdi 5208 . . . . . . . . . 10 (𝜑 → (𝑄‘0) < (𝑄‘1))
7760, 76eqbrtrd 5188 . . . . . . . . 9 (𝜑𝐴 < (𝑄‘1))
7847, 54, 55, 59, 77elicod 13457 . . . . . . . 8 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘1)))
7975oveq2i 7459 . . . . . . . 8 ((𝑄‘0)[,)(𝑄‘1)) = ((𝑄‘0)[,)(𝑄‘(0 + 1)))
8078, 79eleqtrdi 2854 . . . . . . 7 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8180adantr 480 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8232, 81eqeltrd 2844 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
83 fourierdlem48.e . . . . . . . . . . 11 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
8483a1i 11 . . . . . . . . . 10 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
85 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑋𝑥 = 𝑋)
86 fveq2 6920 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
8785, 86oveq12d 7466 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
8887adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
89 fourierdlem48.z . . . . . . . . . . . . . 14 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
9089a1i 11 . . . . . . . . . . . . 13 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
91 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
9291oveq1d 7463 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
9392fveq2d 6924 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
9493oveq1d 7463 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9594adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9621flcld 13849 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
9796zred 12747 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
9897, 15remulcld 11320 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
9990, 95, 10, 98fvmptd 7036 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
10099, 98eqeltrd 2844 . . . . . . . . . . 11 (𝜑 → (𝑍𝑋) ∈ ℝ)
10110, 100readdcld 11319 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
10284, 88, 10, 101fvmptd 7036 . . . . . . . . 9 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
10399oveq2d 7464 . . . . . . . . 9 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
104102, 103eqtrd 2780 . . . . . . . 8 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
105104oveq1d 7463 . . . . . . 7 (𝜑 → ((𝐸𝑋) − 𝑇) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇))
10610recnd 11318 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
10798recnd 11318 . . . . . . . 8 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
10815recnd 11318 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
109106, 107, 108addsubassd 11667 . . . . . . 7 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)))
11096zcnd 12748 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
111110, 108mulsubfacd 11751 . . . . . . . 8 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
112111oveq2d 7464 . . . . . . 7 (𝜑 → (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
113105, 109, 1123eqtrd 2784 . . . . . 6 (𝜑 → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
114113adantr 480 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
115 oveq1 7455 . . . . . . . . 9 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑘 · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
116115oveq2d 7464 . . . . . . . 8 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
117116eqeq2d 2751 . . . . . . 7 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))))
118117anbi2d 629 . . . . . 6 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))))
119118rspcev 3635 . . . . 5 ((((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ ∧ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12025, 82, 114, 119syl12anc 836 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12164, 66oveq12d 7466 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘0)[,)(𝑄‘(0 + 1))))
122121eleq2d 2830 . . . . . . 7 (𝑖 = 0 → (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1)))))
123122anbi1d 630 . . . . . 6 (𝑖 = 0 → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
124123rexbidv 3185 . . . . 5 (𝑖 = 0 → (∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
125124rspcev 3635 . . . 4 ((0 ∈ (0..^𝑀) ∧ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
1268, 120, 125syl2anc 583 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
127 ovex 7481 . . . 4 ((𝐸𝑋) − 𝑇) ∈ V
128 eleq1 2832 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
129 eqeq1 2744 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
130128, 129anbi12d 631 . . . . . . 7 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
1311302rexbidv 3228 . . . . . 6 (𝑦 = ((𝐸𝑋) − 𝑇) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
132131anbi2d 629 . . . . 5 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))))
133132imbi1d 341 . . . 4 (𝑦 = ((𝐸𝑋) − 𝑇) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
134 simpr 484 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
135 nfv 1913 . . . . . . 7 𝑖𝜑
136 nfre1 3291 . . . . . . 7 𝑖𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
137135, 136nfan 1898 . . . . . 6 𝑖(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
138 nfv 1913 . . . . . . 7 𝑘𝜑
139 nfcv 2908 . . . . . . . 8 𝑘(0..^𝑀)
140 nfre1 3291 . . . . . . . 8 𝑘𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
141139, 140nfrexw 3319 . . . . . . 7 𝑘𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
142138, 141nfan 1898 . . . . . 6 𝑘(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
143 simp1 1136 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝜑)
144 simp2l 1199 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑖 ∈ (0..^𝑀))
145 simp3l 1201 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
146143, 144, 145jca31 514 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
147 simp2r 1200 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
148 simp3r 1202 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 = (𝑋 + (𝑘 · 𝑇)))
149 fourierdlem48.ch . . . . . . . . . 10 (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
150149biimpi 216 . . . . . . . . . . . . . . . . 17 (𝜒 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
151150simplld 767 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
152151simplld 767 . . . . . . . . . . . . . . 15 (𝜒𝜑)
153 fourierdlem48.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐷⟶ℝ)
154 frel 6752 . . . . . . . . . . . . . . 15 (𝐹:𝐷⟶ℝ → Rel 𝐹)
155 resindm 6059 . . . . . . . . . . . . . . . 16 (Rel 𝐹 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑋(,)+∞)))
156155eqcomd 2746 . . . . . . . . . . . . . . 15 (Rel 𝐹 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
157152, 153, 154, 1564syl 19 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
158 fdm 6756 . . . . . . . . . . . . . . . . 17 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
159152, 153, 1583syl 18 . . . . . . . . . . . . . . . 16 (𝜒 → dom 𝐹 = 𝐷)
160159ineq2d 4241 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑋(,)+∞) ∩ dom 𝐹) = ((𝑋(,)+∞) ∩ 𝐷))
161160reseq2d 6009 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
162157, 161eqtrd 2780 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
163162oveq1d 7463 . . . . . . . . . . . 12 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
164152, 153syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:𝐷⟶ℝ)
165 ax-resscn 11241 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
166165a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → ℝ ⊆ ℂ)
167164, 166fssd 6764 . . . . . . . . . . . . . 14 (𝜒𝐹:𝐷⟶ℂ)
168 inss2 4259 . . . . . . . . . . . . . . 15 ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷
169168a1i 11 . . . . . . . . . . . . . 14 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷)
170167, 169fssresd 6788 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)):((𝑋(,)+∞) ∩ 𝐷)⟶ℂ)
171 pnfxr 11344 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
172171a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → +∞ ∈ ℝ*)
173151simplrd 769 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑖 ∈ (0..^𝑀))
17440adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
175 fzofzp1 13814 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
176175adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
177174, 176ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
178152, 173, 177syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ)
179150simplrd 769 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑘 ∈ ℤ)
180179zred 12747 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑘 ∈ ℝ)
181152, 15syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑇 ∈ ℝ)
182180, 181remulcld 11320 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑘 · 𝑇) ∈ ℝ)
183178, 182resubcld 11718 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
184183rexrd 11340 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
185183ltpnfd 13184 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) < +∞)
186184, 172, 185xrltled 13212 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞)
187 iooss2 13443 . . . . . . . . . . . . . . 15 ((+∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
188172, 186, 187syl2anc 583 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
189179adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
190189zcnd 12748 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℂ)
191181recnd 11318 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑇 ∈ ℂ)
192191adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℂ)
193190, 192mulneg1d 11743 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
194193oveq2d 7464 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
195 elioore 13437 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℝ)
196195recnd 11318 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
197196adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
198190, 192mulcld 11310 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
199197, 198addcld 11309 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
200199, 198negsubd 11653 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
201197, 198pncand 11648 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
202194, 200, 2013eqtrrd 2785 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
203152adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
204151simpld 494 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝜑𝑖 ∈ (0..^𝑀)))
205 fourierdlem48.cn . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
206 cncff 24938 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
207 fdm 6756 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
208205, 206, 2073syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
209 ssdmres 6042 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
210208, 209sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
211153, 158syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐹 = 𝐷)
212211adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
213210, 212sseqtrd 4049 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
214204, 213syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
215214adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
216 elfzofz 13732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
217216adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
218174, 217ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
219152, 173, 218syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ∈ ℝ)
220219rexrd 11340 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ∈ ℝ*)
221220adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
222178rexrd 11340 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
223222adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
224195adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℝ)
225189zred 12747 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℝ)
226203, 15syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℝ)
227225, 226remulcld 11320 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
228224, 227readdcld 11319 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
229219adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
230152, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑋 ∈ ℝ)
231230, 182readdcld 11319 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
232231adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
233149simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑦 = (𝑋 + (𝑘 · 𝑇)))
234233eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑋 + (𝑘 · 𝑇)) = 𝑦)
235151simprd 495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
236234, 235eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
237 icogelb 13458 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
238220, 222, 236, 237syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
239238adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
240203, 10syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ)
241240rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
242178adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
243242, 227resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
244243rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
245 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
246 ioogtlb 45413 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
247241, 244, 245, 246syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
248240, 224, 227, 247ltadd1dd 11901 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) < (𝑤 + (𝑘 · 𝑇)))
249229, 232, 228, 239, 248lelttrd 11448 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) < (𝑤 + (𝑘 · 𝑇)))
250 iooltub 45428 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
251241, 244, 245, 250syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
252224, 243, 227, 251ltadd1dd 11901 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
253178recnd 11318 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℂ)
254182recnd 11318 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 · 𝑇) ∈ ℂ)
255253, 254npcand 11651 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
256255adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
257252, 256breqtrd 5192 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (𝑄‘(𝑖 + 1)))
258221, 223, 228, 249, 257eliood 45416 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
259215, 258sseldd 4009 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
260189znegcld 12749 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -𝑘 ∈ ℤ)
261 ovex 7481 . . . . . . . . . . . . . . . . . . 19 (𝑤 + (𝑘 · 𝑇)) ∈ V
262 eleq1 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥𝐷 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷))
2632623anbi2d 1441 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
264 oveq1 7455 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
265264eleq1d 2829 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
266263, 265imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
267 negex 11534 . . . . . . . . . . . . . . . . . . . 20 -𝑘 ∈ V
268 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑗 ∈ ℤ ↔ -𝑘 ∈ ℤ))
2692683anbi3d 1442 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ)))
270 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = -𝑘 → (𝑗 · 𝑇) = (-𝑘 · 𝑇))
271270oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑥 + (𝑗 · 𝑇)) = (𝑥 + (-𝑘 · 𝑇)))
272271eleq1d 2829 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷))
273269, 272imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)))
274 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑘 ∈ ℤ ↔ 𝑗 ∈ ℤ))
2752743anbi3d 1442 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷𝑗 ∈ ℤ)))
276 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
277276oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (𝑗 · 𝑇)))
278277eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷))
279275, 278imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)))
280 fourierdlem48.dper . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
281279, 280chvarvv 1998 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)
282267, 273, 281vtocl 3570 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
283261, 266, 282vtocl 3570 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
284203, 259, 260, 283syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
285202, 284eqeltrd 2844 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
286285ralrimiva 3152 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
287 dfss3 3997 . . . . . . . . . . . . . . 15 ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷 ↔ ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
288286, 287sylibr 234 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
289188, 288ssind 4262 . . . . . . . . . . . . 13 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ((𝑋(,)+∞) ∩ 𝐷))
290 ioosscn 13469 . . . . . . . . . . . . . 14 (𝑋(,)+∞) ⊆ ℂ
291 ssinss1 4267 . . . . . . . . . . . . . 14 ((𝑋(,)+∞) ⊆ ℂ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
292290, 291mp1i 13 . . . . . . . . . . . . 13 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
293 eqid 2740 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
294 eqid 2740 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
295230rexrd 11340 . . . . . . . . . . . . . . 15 (𝜒𝑋 ∈ ℝ*)
296230leidd 11856 . . . . . . . . . . . . . . 15 (𝜒𝑋𝑋)
297233oveq1d 7463 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
298230recnd 11318 . . . . . . . . . . . . . . . . . 18 (𝜒𝑋 ∈ ℂ)
299298, 254pncand 11648 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑋)
300297, 299eqtr2d 2781 . . . . . . . . . . . . . . . 16 (𝜒𝑋 = (𝑦 − (𝑘 · 𝑇)))
301 icossre 13488 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
302219, 222, 301syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
303302, 235sseldd 4009 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 ∈ ℝ)
304 icoltub 45426 . . . . . . . . . . . . . . . . . 18 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑦 < (𝑄‘(𝑖 + 1)))
305220, 222, 235, 304syl3anc 1371 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 < (𝑄‘(𝑖 + 1)))
306303, 178, 182, 305ltsub1dd 11902 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑦 − (𝑘 · 𝑇)) < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
307300, 306eqbrtrd 5188 . . . . . . . . . . . . . . 15 (𝜒𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
308295, 184, 295, 296, 307elicod 13457 . . . . . . . . . . . . . 14 (𝜒𝑋 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
309 snunioo1 45430 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
310295, 184, 307, 309syl3anc 1371 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
311310fveq2d 6924 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
312293cnfldtop 24825 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
313 ovex 7481 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ∈ V
314313inex1 5335 . . . . . . . . . . . . . . . . . . 19 ((𝑋(,)+∞) ∩ 𝐷) ∈ V
315 snex 5451 . . . . . . . . . . . . . . . . . . 19 {𝑋} ∈ V
316314, 315unex 7779 . . . . . . . . . . . . . . . . . 18 (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V
317 resttop 23189 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
318312, 316, 317mp2an 691 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top
319318a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
320 retop 24803 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) ∈ Top
321320a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (topGen‘ran (,)) ∈ Top)
322316a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V)
323 iooretop 24807 . . . . . . . . . . . . . . . . . . 19 (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))
324323a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,)))
325 elrestr 17488 . . . . . . . . . . . . . . . . . 18 (((topGen‘ran (,)) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))) → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
326321, 322, 324, 325syl3anc 1371 . . . . . . . . . . . . . . . . 17 (𝜒 → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
327 mnfxr 11347 . . . . . . . . . . . . . . . . . . . . . 22 -∞ ∈ ℝ*
328327a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
329184adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
330 icossre 13488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*) → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
331230, 184, 330syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
332331sselda 4008 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ℝ)
333332mnfltd 13187 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ < 𝑥)
334295adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
335 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
336 icoltub 45426 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
337334, 329, 335, 336syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
338328, 329, 332, 333, 337eliood 45416 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
339 vsnid 4685 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 ∈ {𝑥}
340339a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋𝑥 ∈ {𝑥})
341 sneq 4658 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋 → {𝑥} = {𝑋})
342340, 341eleqtrd 2846 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑋𝑥 ∈ {𝑋})
343 elun2 4206 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
344342, 343syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑋𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
345344adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
346295ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
347171a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → +∞ ∈ ℝ*)
348332adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
349230ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
350 icogelb 13458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
351334, 329, 335, 350syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
352351adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
353 neqne 2954 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋𝑥𝑋)
354353adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
355349, 348, 352, 354leneltd 11444 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 < 𝑥)
356348ltpnfd 13184 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < +∞)
357346, 347, 348, 355, 356eliood 45416 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
358179zcnd 12748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜒𝑘 ∈ ℂ)
359358, 191mulneg1d 11743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜒 → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
360359oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜒 → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
361360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
362 ioosscn 13469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ
363362sseli 4004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
364363adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
365254adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
366364, 365addcld 11309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
367366, 365negsubd 11653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
368364, 365pncand 11648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
369361, 367, 3683eqtrrd 2785 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
370182adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
371224, 370readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
372221, 223, 371, 249, 257eliood 45416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
373215, 372sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
3742683anbi3d 1442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
375270oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = -𝑘 → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
376375eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → (((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
377374, 376imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = -𝑘 → (((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
3782623anbi2d 1441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ)))
379 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)))
380379eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷))
381378, 380imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)))
382261, 381, 281vtocl 3570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)
383267, 377, 382vtocl 3570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
384203, 373, 260, 383syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
385369, 384eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
386385ralrimiva 3152 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
387386, 287sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
388387ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
389184ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
390337adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
391346, 389, 348, 355, 390eliood 45416 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
392388, 391sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝐷)
393357, 392elind 4223 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
394 elun1 4205 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
395393, 394syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
396345, 395pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
397338, 396elind 4223 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
398295adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
399184adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
400 elinel1 4224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
401 elioore 13437 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑥 ∈ ℝ)
402400, 401syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
403402rexrd 11340 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
404403adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
405 elinel2 4225 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
406230adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 ∈ ℝ)
40785eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋𝑋 = 𝑥)
408407adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 = 𝑥)
409406, 408eqled 11393 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 = 𝑋) → 𝑋𝑥)
410409adantlr 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 = 𝑋) → 𝑋𝑥)
411 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝜒)
412 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
413 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥 = 𝑋 → ¬ 𝑥 = 𝑋)
414 velsn 4664 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋)
415413, 414sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋 → ¬ 𝑥 ∈ {𝑋})
416415adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → ¬ 𝑥 ∈ {𝑋})
417 elunnel2 4178 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
418412, 416, 417syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
419 elinel1 4224 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (𝑋(,)+∞))
420418, 419syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
421230adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ)
422 elioore 13437 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝑋(,)+∞) → 𝑥 ∈ ℝ)
423422adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ ℝ)
424295adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ*)
425171a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → +∞ ∈ ℝ*)
426 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ (𝑋(,)+∞))
427 ioogtlb 45413 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
428424, 425, 426, 427syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
429421, 423, 428ltled 11438 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋𝑥)
430411, 420, 429syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
431410, 430pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑋𝑥)
432405, 431sylan2 592 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋𝑥)
433327a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
434184adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
435 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
436 iooltub 45428 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
437433, 434, 435, 436syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
438400, 437sylan2 592 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
439398, 399, 404, 432, 438elicod 13457 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
440397, 439impbida 800 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))))
441440eqrdv 2738 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
442 ioossre 13468 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ⊆ ℝ
443 ssinss1 4267 . . . . . . . . . . . . . . . . . . . 20 ((𝑋(,)+∞) ⊆ ℝ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
444442, 443mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
445230snssd 4834 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑋} ⊆ ℝ)
446444, 445unssd 4215 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
447 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = (topGen‘ran (,))
448293, 447rerest 24845 . . . . . . . . . . . . . . . . . 18 ((((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
449446, 448syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
450326, 441, 4493eltr4d 2859 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
451 isopn3i 23111 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
452319, 450, 451syl2anc 583 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
453311, 452eqtr2d 2781 . . . . . . . . . . . . . 14 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
454308, 453eleqtrd 2846 . . . . . . . . . . . . 13 (𝜒𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
455170, 289, 292, 293, 294, 454limcres 25941 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
456289resabs1d 6037 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
457456oveq1d 7463 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
458165a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ⊆ ℂ)
459153, 458fssd 6764 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:𝐷⟶ℂ)
460211feq2d 6733 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
461459, 460mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:dom 𝐹⟶ℂ)
462152, 461syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐹:dom 𝐹⟶ℂ)
463462adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
464362a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ)
465387, 159sseqtrrd 4050 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
466465adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
467254adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑘 · 𝑇) ∈ ℂ)
468 eqid 2740 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
469 eqeq1 2744 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (𝑘 · 𝑇))))
470469rexbidv 3185 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
471470elrab 3708 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
472471simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
473472adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
474 nfv 1913 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥𝜒
475 nfre1 3291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))
476 nfcv 2908 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥
477475, 476nfrabw 3483 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
478477nfcri 2900 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
479474, 478nfan 1898 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
480 nfv 1913 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 𝑤𝐷
481 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤 = (𝑥 + (𝑘 · 𝑇)))
482 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
483482anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ↔ (𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))))
484 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
485484eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷))
486483, 485imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑥 → (((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)))
487486, 259chvarvv 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
4884873adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
489481, 488eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤𝐷)
4904893exp 1119 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
491490adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
492479, 480, 491rexlimd 3272 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷))
493473, 492mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → 𝑤𝐷)
494493ralrimiva 3152 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
495 dfss3 3997 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
496494, 495sylibr 234 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷)
497496, 159sseqtrrd 4050 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
498497adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
499152adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
500387sselda 4008 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥𝐷)
501179adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
502 fourierdlem48.per . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
503499, 500, 501, 502syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
504503adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) ∧ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
505 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
506463, 464, 466, 467, 468, 498, 504, 505limcperiod 45549 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))))
507255eqcomd 2746 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) = (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
508233, 507oveq12d 7466 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) = ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))))
509230, 183, 182iooshift 45440 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
510508, 509eqtr2d 2781 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = (𝑦(,)(𝑄‘(𝑖 + 1))))
511510reseq2d 6009 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
512511, 234oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
513512adantr 480 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
514506, 513eleqtrd 2846 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
515462adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝐹:dom 𝐹⟶ℂ)
516 ioosscn 13469 . . . . . . . . . . . . . . . . . 18 (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
517516a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
518 icogelb 13458 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑦)
519220, 222, 235, 518syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ≤ 𝑦)
520 iooss1 13442 . . . . . . . . . . . . . . . . . . . . 21 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄𝑖) ≤ 𝑦) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
521220, 519, 520syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
522521, 214sstrd 4019 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
523522, 159sseqtrrd 4050 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
524523adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
525358negcld 11634 . . . . . . . . . . . . . . . . . . 19 (𝜒 → -𝑘 ∈ ℂ)
526525, 191mulcld 11310 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-𝑘 · 𝑇) ∈ ℂ)
527526adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (-𝑘 · 𝑇) ∈ ℂ)
528 eqid 2740 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
529 eqeq1 2744 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (-𝑘 · 𝑇))))
530529rexbidv 3185 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
531530elrab 3708 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
532531simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
533532adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
534 nfre1 3291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))
535534, 476nfrabw 3483 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
536535nfcri 2900 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
537474, 536nfan 1898 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
538 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤 = (𝑥 + (-𝑘 · 𝑇)))
539152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
540522sselda 4008 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
541179adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑘 ∈ ℤ)
542541znegcld 12749 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
543539, 540, 542, 282syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
5445433adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
545538, 544eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤𝐷)
5465453exp 1119 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
547546adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
548537, 480, 547rexlimd 3272 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷))
549533, 548mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → 𝑤𝐷)
550549ralrimiva 3152 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
551 dfss3 3997 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
552550, 551sylibr 234 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷)
553552, 159sseqtrrd 4050 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
554553adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
555152ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
556540adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
557542adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
558271fveq2d 6924 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹‘(𝑥 + (-𝑘 · 𝑇))))
559558eqeq1d 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → ((𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥)))
560269, 559imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))))
561277fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (𝑗 · 𝑇))))
562561eqeq1d 2742 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)))
563275, 562imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))))
564563, 502chvarvv 1998 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))
565267, 560, 564vtocl 3570 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
566555, 556, 557, 565syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
567 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
568515, 517, 524, 527, 528, 554, 566, 567limcperiod 45549 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))))
569359oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = (𝑦 + -(𝑘 · 𝑇)))
570303recnd 11318 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ℂ)
571570, 254negsubd 11653 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + -(𝑘 · 𝑇)) = (𝑦 − (𝑘 · 𝑇)))
572300eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = 𝑋)
573569, 571, 5723eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
574573eqcomd 2746 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑋 = (𝑦 + (-𝑘 · 𝑇)))
575359oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)))
576253, 254negsubd 11653 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
577575, 576eqtr2d 2781 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)))
578574, 577oveq12d 7466 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))))
579180renegcld 11717 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → -𝑘 ∈ ℝ)
580579, 181remulcld 11320 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (-𝑘 · 𝑇) ∈ ℝ)
581303, 178, 580iooshift 45440 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
582578, 581eqtr2d 2781 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
583582adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
584583reseq2d 6009 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
585573adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
586584, 585oveq12d 7466 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
587568, 586eleqtrd 2846 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
588514, 587impbida 800 . . . . . . . . . . . . . 14 (𝜒 → (𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) ↔ 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)))
589588eqrdv 2738 . . . . . . . . . . . . 13 (𝜒 → ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
590457, 589eqtrd 2780 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
591163, 455, 5903eqtr2d 2786 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
592152, 173, 70syl2anc 583 . . . . . . . . . . . . . 14 (𝜒 → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
593152, 173, 205syl2anc 583 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
594 fourierdlem48.r . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
595152, 173, 594syl2anc 583 . . . . . . . . . . . . . 14 (𝜒𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
596 eqid 2740 . . . . . . . . . . . . . 14 if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) = if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦))
597 eqid 2740 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
598219, 178, 592, 593, 595, 303, 178, 305, 521, 596, 597fourierdlem32 46060 . . . . . . . . . . . . 13 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
599521resabs1d 6037 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
600599oveq1d 7463 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
601598, 600eleqtrd 2846 . . . . . . . . . . . 12 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
602 ne0i 4364 . . . . . . . . . . . 12 (if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
603601, 602syl 17 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
604591, 603eqnetrd 3014 . . . . . . . . . 10 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
605149, 604sylbir 235 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
606146, 147, 148, 605syl21anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6076063exp 1119 . . . . . . 7 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
608607adantr 480 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
609137, 142, 608rexlim2d 45546 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
610134, 609mpd 15 . . . 4 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
611127, 133, 610vtocl 3570 . . 3 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6121, 126, 611syl2anc 583 . 2 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
613 iocssre 13487 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
61455, 9, 613syl2anc 583 . . . . 5 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
615 ovex 7481 . . . . . . . . . . 11 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
61689fvmpt2 7040 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
617615, 616mpan2 690 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
618617oveq2d 7464 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
619618mpteq2ia 5269 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62083, 619eqtri 2768 . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62113, 9, 16, 12, 620fourierdlem4 46032 . . . . . 6 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
622621, 10ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
623614, 622sseldd 4009 . . . 4 (𝜑 → (𝐸𝑋) ∈ ℝ)
624623adantr 480 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝐸𝑋) ∈ ℝ)
625 simpl 482 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → 𝜑)
626 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
627 ffn 6747 . . . . . . . . . . . . . . 15 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
62840, 627syl 17 . . . . . . . . . . . . . 14 (𝜑𝑄 Fn (0...𝑀))
629628ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
630 fvelrnb 6982 . . . . . . . . . . . . 13 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
631629, 630syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
632626, 631mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
633 1zzd 12674 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
634 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
635634ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
636635zred 12747 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
637 elfzle1 13587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
638637ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
639 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
640639eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
641640ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
642 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
643642adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
64437simprld 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
645644simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑄‘0) = 𝐴)
646645ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
647641, 643, 6463eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
648647adantllr 718 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
649648adantllr 718 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
65013adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
65155adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
6529rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐵 ∈ ℝ*)
653652adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
654 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
655 iocgtlb 45420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
656651, 653, 654, 655syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
657650, 656gtned 11425 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
658657neneqd 2951 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
659658ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
660649, 659pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
661660neqned 2953 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
662636, 638, 661ne0gt0d 11427 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
663 0zd 12651 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
664 zltp1le 12693 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
665663, 635, 664syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
666662, 665mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
66774, 666eqbrtrid 5201 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
668 eluz2 12909 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
669633, 635, 667, 668syl3anbrc 1343 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
670 nnuz 12946 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
671669, 670eleqtrrdi 2855 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
672 nnm1nn0 12594 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
673671, 672syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
674673, 42eleqtrdi 2854 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
6754ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
676 peano2zm 12686 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
677634, 676syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
678677zred 12747 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
679634zred 12747 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
680 elfzel2 13582 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
681680zred 12747 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
682679ltm1d 12227 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
683 elfzle2 13588 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
684678, 679, 681, 682, 683ltletrd 11450 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
685684ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
686 elfzo2 13719 . . . . . . . . . . . . . . . 16 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
687674, 675, 685, 686syl3anbrc 1343 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
68840ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
689635, 676syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
690673nn0ge0d 12616 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
691678, 681, 684ltled 11438 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
692691ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
693663, 675, 689, 690, 692elfzd 13575 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
694688, 693ffvelcdmd 7119 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
695694rexrd 11340 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
69640ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
697696rexrd 11340 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
698697adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
699698adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
700614sselda 4008 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
701700rexrd 11340 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
702701ad2antrr 725 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
703 simplll 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
704 ovex 7481 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 − 1) ∈ V
705 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
706705anbi2d 629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
707 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
708 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
709708fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
710707, 709breq12d 5179 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
711706, 710imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
712704, 711, 70vtocl 3570 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
713703, 687, 712syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
714634zcnd 12748 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
715 1cnd 11285 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
716714, 715npcand 11651 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
717716eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
718717fveq2d 6924 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
719718eqcomd 2746 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
720719ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
721713, 720breqtrd 5192 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
722 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
723721, 722breqtrd 5192 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
724623leidd 11856 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
725724ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
726640adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
727725, 726breqtrd 5192 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
728727adantllr 718 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
729695, 699, 702, 723, 728eliocd 45425 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
730718oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
731730ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
732729, 731eleqtrd 2846 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
733707, 709oveq12d 7466 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
734733eleq2d 2830 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
735734rspcev 3635 . . . . . . . . . . . . . . 15 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
736687, 732, 735syl2anc 583 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
737736ex 412 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
738737adantlr 714 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
739738rexlimdva 3161 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
740632, 739mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
7413ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
74240ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
743 iocssicc 13497 . . . . . . . . . . . . . . 15 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
744645eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
745644simprd 495 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄𝑀) = 𝐵)
746745eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
747744, 746oveq12d 7466 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
748743, 747sseqtrid 4061 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
749748sselda 4008 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
750749adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
751 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
752 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
753752breq1d 5176 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
754753cbvrabv 3454 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
755754supeq1i 9516 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
756741, 742, 750, 751, 755fourierdlem25 46053 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
757 ioossioc 45410 . . . . . . . . . . . . . 14 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
758757sseli 4004 . . . . . . . . . . . . 13 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
759758a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
760759reximdva 3174 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
761756, 760mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
762740, 761pm2.61dan 812 . . . . . . . . 9 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
763622, 762mpdan 686 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
764 fveq2 6920 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
765 oveq1 7455 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
766765fveq2d 6924 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
767764, 766oveq12d 7466 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
768767eleq2d 2830 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
769768cbvrexvw 3244 . . . . . . . 8 (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
770763, 769sylib 218 . . . . . . 7 (𝜑 → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
771770adantr 480 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
772 elfzonn0 13761 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℕ0)
773 1nn0 12569 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
774773a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 1 ∈ ℕ0)
775772, 774nn0addcld 12617 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ ℕ0)
776775, 42eleqtrdi 2854 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (ℤ‘0))
777776adantr 480 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7787773ad2antl2 1186 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7794ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
7807793ad2antl1 1185 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
781772nn0red 12614 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
782781adantr 480 . . . . . . . . . . . . 13 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
7837823ad2antl2 1186 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
784 1red 11291 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 1 ∈ ℝ)
785783, 784readdcld 11319 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
786780zred 12747 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℝ)
787 elfzop1le2 13729 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ≤ 𝑀)
788787adantr 480 . . . . . . . . . . . 12 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
7897883ad2antl2 1186 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
790 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
791 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝑗 + 1) → (𝑄𝑀) = (𝑄‘(𝑗 + 1)))
792791eqcomd 2746 . . . . . . . . . . . . . . . . 17 (𝑀 = (𝑗 + 1) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
793792adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
794745ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄𝑀) = 𝐵)
795790, 793, 7943eqtrd 2784 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
796795adantllr 718 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
797 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) ≠ 𝐵)
798797neneqd 2951 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → ¬ (𝐸𝑋) = 𝐵)
799796, 798pm2.65da 816 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ¬ 𝑀 = (𝑗 + 1))
800799neqned 2953 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
8018003ad2antl1 1185 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
802785, 786, 789, 801leneltd 11444 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) < 𝑀)
803 elfzo2 13719 . . . . . . . . . 10 ((𝑗 + 1) ∈ (0..^𝑀) ↔ ((𝑗 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 + 1) < 𝑀))
804778, 780, 802, 803syl3anbrc 1343 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (0..^𝑀))
80540adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
806 fzofzp1 13814 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
807806adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
808805, 807ffvelcdmd 7119 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
809808rexrd 11340 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
810809adantlr 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8118103adant3 1132 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
812811adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
813 simpl1l 1224 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝜑)
814813, 40syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑄:(0...𝑀)⟶ℝ)
815 fzofzp1 13814 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ (0..^𝑀) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
816804, 815syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
817814, 816ffvelcdmd 7119 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ)
818817rexrd 11340 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ*)
819623rexrd 11340 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ ℝ*)
820819ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8218203ad2antl1 1185 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
822808leidd 11856 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
823822adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
824 id 22 . . . . . . . . . . . . . . 15 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
825824eqcomd 2746 . . . . . . . . . . . . . 14 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
826825adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
827823, 826breqtrd 5192 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
828827adantllr 718 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
8298283adantl3 1168 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
830 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
831 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
832 ovex 7481 . . . . . . . . . . . . . 14 (𝑗 + 1) ∈ V
833 eleq1 2832 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 + 1) ∈ (0..^𝑀)))
834833anbi2d 629 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀))))
835 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄𝑖) = (𝑄‘(𝑗 + 1)))
836 oveq1 7455 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 + 1) → (𝑖 + 1) = ((𝑗 + 1) + 1))
837836fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 + 1) + 1)))
838835, 837breq12d 5179 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1))))
839834, 838imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = (𝑗 + 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))))
840832, 839, 70vtocl 3570 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
841840adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
842831, 841eqbrtrd 5188 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
843813, 804, 830, 842syl21anc 837 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
844812, 818, 821, 829, 843elicod 13457 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
845835, 837oveq12d 7466 . . . . . . . . . . 11 (𝑖 = (𝑗 + 1) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
846845eleq2d 2830 . . . . . . . . . 10 (𝑖 = (𝑗 + 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))))
847846rspcev 3635 . . . . . . . . 9 (((𝑗 + 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
848804, 844, 847syl2anc 583 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
849 simpl2 1192 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ (0..^𝑀))
850 id 22 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
8518503adant1r 1177 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
852 elfzofz 13732 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
853852adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
854805, 853ffvelcdmd 7119 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ)
855854rexrd 11340 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ*)
856855adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
8578563adantl3 1168 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
858809adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8598583adantl3 1168 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
860819adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8618603ad2antl1 1185 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8628543adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ)
8636233ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ℝ)
8648553adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ*)
8658093adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
866 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
867 iocgtlb 45420 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
868864, 865, 866, 867syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
869862, 863, 868ltled 11438 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ≤ (𝐸𝑋))
870869adantr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ≤ (𝐸𝑋))
871863adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ)
872808adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
8738723adantl3 1168 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
874 iocleub 45421 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
875864, 865, 866, 874syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
876875adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
877 neqne 2954 . . . . . . . . . . . . . 14 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) ≠ (𝑄‘(𝑗 + 1)))
878877necomd 3002 . . . . . . . . . . . . 13 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
879878adantl 481 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
880871, 873, 876, 879leneltd 11444 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘(𝑗 + 1)))
881857, 859, 861, 870, 880elicod 13457 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
882851, 881sylan 579 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
883764, 766oveq12d 7466 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
884883eleq2d 2830 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))))
885884rspcev 3635 . . . . . . . . 9 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
886849, 882, 885syl2anc 583 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
887848, 886pm2.61dan 812 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
888887rexlimdv3a 3165 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
889771, 888mpd 15 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
890 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
891 oveq1 7455 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
892891oveq2d 7464 . . . . . . . . . . . 12 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
893892eqeq2d 2751 . . . . . . . . . . 11 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
894893rspcev 3635 . . . . . . . . . 10 (((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ ∧ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
89596, 104, 894syl2anc 583 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
896895ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
897 r19.42v 3197 . . . . . . . 8 (∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
898890, 896, 897sylanbrc 582 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
899898ex 412 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
900899reximdv 3176 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
901889, 900mpd 15 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
902625, 901jca 511 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
903 eleq1 2832 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
904 eqeq1 2744 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
905903, 904anbi12d 631 . . . . . . 7 (𝑦 = (𝐸𝑋) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
9069052rexbidv 3228 . . . . . 6 (𝑦 = (𝐸𝑋) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
907906anbi2d 629 . . . . 5 (𝑦 = (𝐸𝑋) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))))
908907imbi1d 341 . . . 4 (𝑦 = (𝐸𝑋) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
909908, 610vtoclg 3566 . . 3 ((𝐸𝑋) ∈ ℝ → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
910624, 902, 909sylc 65 . 2 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
911612, 910pm2.61dane 3035 1 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  Rel wrel 5705   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cuz 12903  (,)cioo 13407  (,]cioc 13408  [,)cico 13409  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711  cfl 13841  t crest 17480  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  Topctop 22920  intcnt 23046  cnccncf 24921   lim climc 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-ntr 23049  df-cn 23256  df-cnp 23257  df-xms 24351  df-ms 24352  df-cncf 24923  df-limc 25921
This theorem is referenced by:  fourierdlem94  46121  fourierdlem113  46140
  Copyright terms: Public domain W3C validator