MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexn0OLD Structured version   Visualization version   GIF version

Theorem rexn0OLD 4442
Description: Obsolete version of rexn0 4438 as of 2-Sep-2024. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rexn0OLD (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0OLD
StepHypRef Expression
1 ne0i 4265 . . 3 (𝑥𝐴𝐴 ≠ ∅)
21a1d 25 . 2 (𝑥𝐴 → (𝜑𝐴 ≠ ∅))
32rexlimiv 3208 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  wrex 3064  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-dif 3886  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator