MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexn0 Structured version   Visualization version   GIF version

Theorem rexn0 4438
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2817, ax-8 2110. (Revised by Gino Giotto, 2-Sep-2024.)
Assertion
Ref Expression
rexn0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0
StepHypRef Expression
1 dfrex2 3166 . . 3 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
2 rzal 4436 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴 ¬ 𝜑)
32con3i 154 . . 3 (¬ ∀𝑥𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅)
41, 3sylbi 216 . 2 (∃𝑥𝐴 𝜑 → ¬ 𝐴 = ∅)
54neqned 2949 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2942  wral 3063  wrex 3064  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-ne 2943  df-ral 3068  df-rex 3069  df-dif 3886  df-nul 4254
This theorem is referenced by:  2reu4  4454  reusv2lem3  5318  eusvobj2  7248  isdrs2  17939  ismnd  18303  slwn0  19135  lbsexg  20341  iunconn  22487  grpon0  28765  sltn0  34012  filbcmb  35825  isbnd2  35868  rencldnfi  40559  iunconnlem2  42444  stoweidlem14  43445  hoidmvval0  44015  thinciso  46229
  Copyright terms: Public domain W3C validator