MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexn0 Structured version   Visualization version   GIF version

Theorem rexn0 4460
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2808, ax-8 2115. (Revised by GG, 2-Sep-2024.)
Assertion
Ref Expression
rexn0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0
StepHypRef Expression
1 dfrex2 3060 . . 3 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
2 rzal 4458 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴 ¬ 𝜑)
32con3i 154 . . 3 (¬ ∀𝑥𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅)
41, 3sylbi 217 . 2 (∃𝑥𝐴 𝜑 → ¬ 𝐴 = ∅)
54neqned 2936 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wne 2929  wral 3048  wrex 3057  c0 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-ne 2930  df-ral 3049  df-rex 3058  df-dif 3901  df-nul 4283
This theorem is referenced by:  2reu4  4472  reusv2lem3  5340  eusvobj2  7344  isdrs2  18214  ismnd  18647  slwn0  19529  lbsexg  21103  iunconn  23344  sltn0  27852  grpon0  30484  filbcmb  37800  isbnd2  37843  rencldnfi  42938  iunconnlem2  45051  stoweidlem14  46136  hoidmvval0  46709  thinciso  49595
  Copyright terms: Public domain W3C validator