| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexn0 | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2806, ax-8 2113. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3059 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | rzal 4459 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 3 | 2 | con3i 154 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ 𝐴 = ∅) |
| 5 | 4 | neqned 2935 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 df-ral 3048 df-rex 3057 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: 2reu4 4473 reusv2lem3 5338 eusvobj2 7338 isdrs2 18209 ismnd 18642 slwn0 19525 lbsexg 21099 iunconn 23341 sltn0 27849 grpon0 30477 filbcmb 37779 isbnd2 37822 rencldnfi 42853 iunconnlem2 44966 stoweidlem14 46051 hoidmvval0 46624 thinciso 49501 |
| Copyright terms: Public domain | W3C validator |