Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexn0 | Structured version Visualization version GIF version |
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 2-Sep-2024.) |
Ref | Expression |
---|---|
rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3170 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | rzal 4439 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
3 | 2 | con3i 154 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅) |
4 | 1, 3 | sylbi 216 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ 𝐴 = ∅) |
5 | 4 | neqned 2950 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-ne 2944 df-ral 3069 df-rex 3070 df-dif 3890 df-nul 4257 |
This theorem is referenced by: 2reu4 4457 reusv2lem3 5323 eusvobj2 7268 isdrs2 18024 ismnd 18388 slwn0 19220 lbsexg 20426 iunconn 22579 grpon0 28864 sltn0 34085 filbcmb 35898 isbnd2 35941 rencldnfi 40643 iunconnlem2 42555 stoweidlem14 43555 hoidmvval0 44125 thinciso 46341 |
Copyright terms: Public domain | W3C validator |