Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexn0 | Structured version Visualization version GIF version |
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2812, ax-8 2116. (Revised by Gino Giotto, 2-Sep-2024.) |
Ref | Expression |
---|---|
rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3153 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | rzal 4405 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
3 | 2 | con3i 157 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅) |
4 | 1, 3 | sylbi 220 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ 𝐴 = ∅) |
5 | 4 | neqned 2942 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ≠ wne 2935 ∀wral 3054 ∃wrex 3055 ∅c0 4221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-ne 2936 df-ral 3059 df-rex 3060 df-dif 3856 df-nul 4222 |
This theorem is referenced by: 2reu4 4423 reusv2lem3 5277 eusvobj2 7176 isdrs2 17678 ismnd 18043 slwn0 18871 lbsexg 20068 iunconn 22192 grpon0 28450 sltn0 33741 filbcmb 35554 isbnd2 35597 rencldnfi 40256 iunconnlem2 42134 stoweidlem14 43138 hoidmvval0 43708 |
Copyright terms: Public domain | W3C validator |