MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexn0 Structured version   Visualization version   GIF version

Theorem rexn0 4486
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2809, ax-8 2110. (Revised by GG, 2-Sep-2024.)
Assertion
Ref Expression
rexn0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0
StepHypRef Expression
1 dfrex2 3063 . . 3 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
2 rzal 4484 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴 ¬ 𝜑)
32con3i 154 . . 3 (¬ ∀𝑥𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅)
41, 3sylbi 217 . 2 (∃𝑥𝐴 𝜑 → ¬ 𝐴 = ∅)
54neqned 2939 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wne 2932  wral 3051  wrex 3060  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-ne 2933  df-ral 3052  df-rex 3061  df-dif 3929  df-nul 4309
This theorem is referenced by:  2reu4  4498  reusv2lem3  5370  eusvobj2  7397  isdrs2  18318  ismnd  18715  slwn0  19596  lbsexg  21125  iunconn  23366  sltn0  27869  grpon0  30483  filbcmb  37764  isbnd2  37807  rencldnfi  42844  iunconnlem2  44959  stoweidlem14  46043  hoidmvval0  46616  thinciso  49356
  Copyright terms: Public domain W3C validator