![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexn0 | Structured version Visualization version GIF version |
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2811, ax-8 2109. (Revised by Gino Giotto, 2-Sep-2024.) |
Ref | Expression |
---|---|
rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3074 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | rzal 4509 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
3 | 2 | con3i 154 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅) |
4 | 1, 3 | sylbi 216 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ 𝐴 = ∅) |
5 | 4 | neqned 2948 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-ne 2942 df-ral 3063 df-rex 3072 df-dif 3952 df-nul 4324 |
This theorem is referenced by: 2reu4 4527 reusv2lem3 5399 eusvobj2 7401 isdrs2 18259 ismnd 18628 slwn0 19483 lbsexg 20777 iunconn 22932 sltn0 27399 grpon0 29755 filbcmb 36608 isbnd2 36651 rencldnfi 41559 iunconnlem2 43696 stoweidlem14 44730 hoidmvval0 45303 thinciso 47680 |
Copyright terms: Public domain | W3C validator |