MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexn0 Structured version   Visualization version   GIF version

Theorem rexn0 4534
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2819, ax-8 2110. (Revised by GG, 2-Sep-2024.)
Assertion
Ref Expression
rexn0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0
StepHypRef Expression
1 dfrex2 3079 . . 3 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
2 rzal 4532 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴 ¬ 𝜑)
32con3i 154 . . 3 (¬ ∀𝑥𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅)
41, 3sylbi 217 . 2 (∃𝑥𝐴 𝜑 → ¬ 𝐴 = ∅)
54neqned 2953 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wne 2946  wral 3067  wrex 3076  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-ne 2947  df-ral 3068  df-rex 3077  df-dif 3979  df-nul 4353
This theorem is referenced by:  2reu4  4546  reusv2lem3  5418  eusvobj2  7440  isdrs2  18376  ismnd  18775  slwn0  19657  lbsexg  21189  iunconn  23457  sltn0  27961  grpon0  30534  filbcmb  37700  isbnd2  37743  rencldnfi  42777  iunconnlem2  44906  stoweidlem14  45935  hoidmvval0  46508  thinciso  48727
  Copyright terms: Public domain W3C validator