| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexn0 | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2808, ax-8 2115. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3060 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 2 | rzal 4458 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 3 | 2 | con3i 154 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ 𝐴 = ∅) |
| 5 | 4 | neqned 2936 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-ne 2930 df-ral 3049 df-rex 3058 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: 2reu4 4472 reusv2lem3 5340 eusvobj2 7344 isdrs2 18214 ismnd 18647 slwn0 19529 lbsexg 21103 iunconn 23344 sltn0 27852 grpon0 30484 filbcmb 37800 isbnd2 37843 rencldnfi 42938 iunconnlem2 45051 stoweidlem14 46136 hoidmvval0 46709 thinciso 49595 |
| Copyright terms: Public domain | W3C validator |