MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexn0 Structured version   Visualization version   GIF version

Theorem rexn0 4511
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2811, ax-8 2109. (Revised by Gino Giotto, 2-Sep-2024.)
Assertion
Ref Expression
rexn0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexn0
StepHypRef Expression
1 dfrex2 3074 . . 3 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
2 rzal 4509 . . . 4 (𝐴 = ∅ → ∀𝑥𝐴 ¬ 𝜑)
32con3i 154 . . 3 (¬ ∀𝑥𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅)
41, 3sylbi 216 . 2 (∃𝑥𝐴 𝜑 → ¬ 𝐴 = ∅)
54neqned 2948 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wne 2941  wral 3062  wrex 3071  c0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-ne 2942  df-ral 3063  df-rex 3072  df-dif 3952  df-nul 4324
This theorem is referenced by:  2reu4  4527  reusv2lem3  5399  eusvobj2  7401  isdrs2  18259  ismnd  18628  slwn0  19483  lbsexg  20777  iunconn  22932  sltn0  27399  grpon0  29755  filbcmb  36608  isbnd2  36651  rencldnfi  41559  iunconnlem2  43696  stoweidlem14  44730  hoidmvval0  45303  thinciso  47680
  Copyright terms: Public domain W3C validator