Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexn0 | Structured version Visualization version GIF version |
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) Avoid df-clel 2817, ax-8 2110. (Revised by Gino Giotto, 2-Sep-2024.) |
Ref | Expression |
---|---|
rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3166 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | rzal 4436 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
3 | 2 | con3i 154 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 → ¬ 𝐴 = ∅) |
4 | 1, 3 | sylbi 216 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ¬ 𝐴 = ∅) |
5 | 4 | neqned 2949 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ne 2943 df-ral 3068 df-rex 3069 df-dif 3886 df-nul 4254 |
This theorem is referenced by: 2reu4 4454 reusv2lem3 5318 eusvobj2 7248 isdrs2 17939 ismnd 18303 slwn0 19135 lbsexg 20341 iunconn 22487 grpon0 28765 sltn0 34012 filbcmb 35825 isbnd2 35868 rencldnfi 40559 iunconnlem2 42444 stoweidlem14 43445 hoidmvval0 44015 thinciso 46229 |
Copyright terms: Public domain | W3C validator |