| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexssOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rexss 4059 as of 14-Oct-2025. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rexssOLD | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3977 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | pm4.71rd 562 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) |
| 3 | 2 | anbi1d 631 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑))) |
| 4 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 5 | 3, 4 | bitrdi 287 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
| 6 | 5 | rexbidv2 3175 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2816 df-rex 3071 df-ss 3968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |