MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2ab Structured version   Visualization version   GIF version

Theorem ss2ab 4072
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
Assertion
Ref Expression
ss2ab ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem ss2ab
StepHypRef Expression
1 nfab1 2905 . . 3 𝑥{𝑥𝜑}
2 nfab1 2905 . . 3 𝑥{𝑥𝜓}
31, 2dfssf 3986 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}))
4 abid 2716 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
5 abid 2716 . . . 4 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
64, 5imbi12i 350 . . 3 ((𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ (𝜑𝜓))
76albii 1816 . 2 (∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
83, 7bitri 275 1 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2106  {cab 2712  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-10 2139  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-clel 2814  df-nfc 2890  df-ss 3980
This theorem is referenced by:  abss  4073  ssab  4074  ss2rab  4081  rabss2  4088  rabsssn  4673  rabsspr  32529  rabsstp  32530  bj-gabss  36918  clss2lem  43601  ssabf  45040  abssf  45052  cfsetssfset  47006  sprssspr  47406
  Copyright terms: Public domain W3C validator