MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2ab Structured version   Visualization version   GIF version

Theorem ss2ab 3966
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
Assertion
Ref Expression
ss2ab ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem ss2ab
StepHypRef Expression
1 nfab1 2921 . . 3 𝑥{𝑥𝜑}
2 nfab1 2921 . . 3 𝑥{𝑥𝜓}
31, 2dfss2f 3884 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}))
4 abid 2739 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
5 abid 2739 . . . 4 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
64, 5imbi12i 354 . . 3 ((𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ (𝜑𝜓))
76albii 1821 . 2 (∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
83, 7bitri 278 1 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536  wcel 2111  {cab 2735  wss 3860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-v 3411  df-in 3867  df-ss 3877
This theorem is referenced by:  abss  3967  ssab  3968  ss2abdvOLD  3972  ss2abiOLD  3974  ss2rab  3977  rabss2  3984  rabsssn  4567  clss2lem  40729  ssabf  42154  abssf  42166  cfsetssfset  44058  sprssspr  44425
  Copyright terms: Public domain W3C validator