| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2ab | Structured version Visualization version GIF version | ||
| Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.) |
| Ref | Expression |
|---|---|
| ss2ab | ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab1 2894 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 2 | nfab1 2894 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
| 3 | 1, 2 | dfssf 3940 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓})) |
| 4 | abid 2712 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 5 | abid 2712 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
| 6 | 4, 5 | imbi12i 350 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 → 𝜓)) |
| 7 | 6 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 → 𝜓)) |
| 8 | 3, 7 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 {cab 2708 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-clel 2804 df-nfc 2879 df-ss 3934 |
| This theorem is referenced by: abss 4029 ssab 4030 ss2rab 4037 rabss2 4044 rabsssn 4635 rabsspr 32437 rabsstp 32438 bj-gabss 36930 clss2lem 43607 ssabf 45101 abssf 45113 cfsetssfset 47061 sprssspr 47486 |
| Copyright terms: Public domain | W3C validator |