MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2ab Structured version   Visualization version   GIF version

Theorem ss2ab 3989
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
Assertion
Ref Expression
ss2ab ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem ss2ab
StepHypRef Expression
1 nfab1 2908 . . 3 𝑥{𝑥𝜑}
2 nfab1 2908 . . 3 𝑥{𝑥𝜓}
31, 2dfss2f 3907 . 2 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}))
4 abid 2719 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
5 abid 2719 . . . 4 (𝑥 ∈ {𝑥𝜓} ↔ 𝜓)
64, 5imbi12i 350 . . 3 ((𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ (𝜑𝜓))
76albii 1823 . 2 (∀𝑥(𝑥 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
83, 7bitri 274 1 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  {cab 2715  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  abss  3990  ssab  3991  ss2abdvOLD  3995  ss2abiOLD  3997  ss2rab  4000  rabss2  4007  rabsssn  4600  bj-gabss  35050  clss2lem  41108  ssabf  42539  abssf  42551  cfsetssfset  44437  sprssspr  44821
  Copyright terms: Public domain W3C validator