![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2ab | Structured version Visualization version GIF version |
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.) |
Ref | Expression |
---|---|
ss2ab | ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2910 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | nfab1 2910 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
3 | 1, 2 | dfssf 3999 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓})) |
4 | abid 2721 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
5 | abid 2721 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
6 | 4, 5 | imbi12i 350 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 → 𝜓)) |
7 | 6 | albii 1817 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 {cab 2717 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-clel 2819 df-nfc 2895 df-ss 3993 |
This theorem is referenced by: abss 4086 ssab 4087 ss2rab 4094 rabss2 4101 rabsssn 4690 rabsspr 32529 rabsstp 32530 bj-gabss 36901 clss2lem 43573 ssabf 45002 abssf 45014 cfsetssfset 46971 sprssspr 47355 |
Copyright terms: Public domain | W3C validator |