![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2ab | Structured version Visualization version GIF version |
Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.) |
Ref | Expression |
---|---|
ss2ab | ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2901 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | nfab1 2901 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
3 | 1, 2 | dfss2f 3970 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓})) |
4 | abid 2709 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
5 | abid 2709 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
6 | 4, 5 | imbi12i 350 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 → 𝜓)) |
7 | 6 | albii 1814 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 → 𝜓)) |
8 | 3, 7 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 ∈ wcel 2099 {cab 2705 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-v 3473 df-in 3954 df-ss 3964 |
This theorem is referenced by: abss 4055 ssab 4056 ss2abdvOLD 4060 ss2abiOLD 4062 ss2rab 4066 rabss2 4073 rabsssn 4671 bj-gabss 36413 clss2lem 43041 ssabf 44466 abssf 44478 cfsetssfset 46438 sprssspr 46821 |
Copyright terms: Public domain | W3C validator |