| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbidv2 | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| rexbidv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| rexbidv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbidv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 3 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 4 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: rexbidva 3162 rexeqbidv 3326 rexssOLD 4036 iuneq12d 4997 exopxfr2 5824 isoini 7331 rexsupp 8181 omabs 8663 elfi2 9426 wemapsolem 9564 ltexpi 10916 rexuz 12914 ncoprmgcdne1b 16669 lpigen 21296 llyi 23412 nllyi 23413 elpi1 24996 ressupprn 32667 xrecex 32894 constrcbvlem 33789 bnj18eq1 34958 ldual1dim 39184 pmapjat1 39872 mrefg2 42730 islssfg2 43095 fourierdlem71 46206 hoiqssbl 46654 reuxfr1dd 48785 lubeldm2d 48932 glbeldm2d 48933 |
| Copyright terms: Public domain | W3C validator |