MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbidv2 Structured version   Visualization version   GIF version

Theorem rexbidv2 3166
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.)
Hypothesis
Ref Expression
rexbidv2.1 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
Assertion
Ref Expression
rexbidv2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rexbidv2
StepHypRef Expression
1 rexbidv2.1 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
21exbidv 1916 . 2 (𝜑 → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐵𝜒)))
3 df-rex 3063 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
4 df-rex 3063 . 2 (∃𝑥𝐵 𝜒 ↔ ∃𝑥(𝑥𝐵𝜒))
52, 3, 43bitr4g 314 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1773  wcel 2098  wrex 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905
This theorem depends on definitions:  df-bi 206  df-ex 1774  df-rex 3063
This theorem is referenced by:  rexbidva  3168  rexeqbidv  3335  rexss  4047  exopxfr2  5834  isoini  7327  rexsupp  8161  omabs  8645  elfi2  9404  wemapsolem  9540  ltexpi  10892  rexuz  12878  ncoprmgcdne1b  16583  lpigen  21173  llyi  23288  nllyi  23289  elpi1  24882  ressupprn  32336  xrecex  32510  bnj18eq1  34393  ldual1dim  38492  pmapjat1  39180  mrefg2  41900  islssfg2  42268  fourierdlem71  45344  hoiqssbl  45792  lubeldm2d  47745  glbeldm2d  47746
  Copyright terms: Public domain W3C validator