Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexbidv2 | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rexbidv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
rexbidv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbidv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | exbidv 1924 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
3 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
4 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-rex 3070 |
This theorem is referenced by: rexbidva 3225 rexeqbidv 3337 rexss 3992 exopxfr2 5753 isoini 7209 rexsupp 7998 omabs 8481 elfi2 9173 wemapsolem 9309 ltexpi 10658 rexuz 12638 ncoprmgcdne1b 16355 lpigen 20527 llyi 22625 nllyi 22626 elpi1 24208 ressupprn 31024 xrecex 31194 bnj18eq1 32907 ldual1dim 37180 pmapjat1 37867 mrefg2 40529 islssfg2 40896 fourierdlem71 43718 hoiqssbl 44163 lubeldm2d 46252 glbeldm2d 46253 |
Copyright terms: Public domain | W3C validator |