MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralssOLD Structured version   Visualization version   GIF version

Theorem ralssOLD 4026
Description: Obsolete version of ralss 4024 as of 14-Oct-2025. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ralssOLD (𝐴𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralssOLD
StepHypRef Expression
1 ssel 3943 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21pm4.71rd 562 . . . 4 (𝐴𝐵 → (𝑥𝐴 ↔ (𝑥𝐵𝑥𝐴)))
32imbi1d 341 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ ((𝑥𝐵𝑥𝐴) → 𝜑)))
4 impexp 450 . . 3 (((𝑥𝐵𝑥𝐴) → 𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑)))
53, 4bitrdi 287 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑))))
65ralbidv2 3153 1 (𝐴𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 (𝑥𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2804  df-ral 3046  df-ss 3934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator