MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexss Structured version   Visualization version   GIF version

Theorem rexss 4053
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rexss (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexss
StepHypRef Expression
1 ssel 3973 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21pm4.71rd 562 . . . 4 (𝐴𝐵 → (𝑥𝐴 ↔ (𝑥𝐵𝑥𝐴)))
32anbi1d 630 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ ((𝑥𝐵𝑥𝐴) ∧ 𝜑)))
4 anass 468 . . 3 (((𝑥𝐵𝑥𝐴) ∧ 𝜑) ↔ (𝑥𝐵 ∧ (𝑥𝐴𝜑)))
53, 4bitrdi 287 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵 ∧ (𝑥𝐴𝜑))))
65rexbidv2 3171 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  wrex 3067  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rex 3068  df-v 3473  df-in 3954  df-ss 3964
This theorem is referenced by:  oddnn02np1  16325  oddge22np1  16326  evennn02n  16327  evennn2n  16328  2lgslem1a  27337  omssubadd  33920  limsupmnfuzlem  45114  sbgoldbo  47127
  Copyright terms: Public domain W3C validator