MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexss Structured version   Visualization version   GIF version

Theorem rexss 4058
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) Avoid axioms. (Revised by SN, 14-Oct-2025.)
Assertion
Ref Expression
rexss (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexss
StepHypRef Expression
1 df-ss 3967 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 pm3.41 492 . . . . 5 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) → 𝑥𝐵))
32pm4.71rd 562 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) ↔ (𝑥𝐵 ∧ (𝑥𝐴𝜑))))
43alexbii 1832 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑥𝐴𝜑))))
51, 4sylbi 217 . 2 (𝐴𝐵 → (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑥𝐴𝜑))))
6 df-rex 3070 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
7 df-rex 3070 . 2 (∃𝑥𝐵 (𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝑥𝐴𝜑)))
85, 6, 73bitr4g 314 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537  wex 1778  wcel 2107  wrex 3069  wss 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-rex 3070  df-ss 3967
This theorem is referenced by:  oddnn02np1  16386  oddge22np1  16387  evennn02n  16388  evennn2n  16389  2lgslem1a  27436  omssubadd  34303  rexabso  44991  limsupmnfuzlem  45746  sbgoldbo  47779
  Copyright terms: Public domain W3C validator