Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexss Structured version   Visualization version   GIF version

Theorem rexss 4024
 Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rexss (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexss
StepHypRef Expression
1 ssel 3946 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21pm4.71rd 566 . . . 4 (𝐴𝐵 → (𝑥𝐴 ↔ (𝑥𝐵𝑥𝐴)))
32anbi1d 632 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ ((𝑥𝐵𝑥𝐴) ∧ 𝜑)))
4 anass 472 . . 3 (((𝑥𝐵𝑥𝐴) ∧ 𝜑) ↔ (𝑥𝐵 ∧ (𝑥𝐴𝜑)))
53, 4syl6bb 290 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵 ∧ (𝑥𝐴𝜑))))
65rexbidv2 3288 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2115  ∃wrex 3134   ⊆ wss 3919 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-rex 3139  df-v 3482  df-in 3926  df-ss 3936 This theorem is referenced by:  oddnn02np1  15695  oddge22np1  15696  evennn02n  15697  evennn2n  15698  2lgslem1a  25973  omssubadd  31585  limsupmnfuzlem  42234  sbgoldbo  44171
 Copyright terms: Public domain W3C validator