| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexss | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) Avoid axioms. (Revised by SN, 14-Oct-2025.) |
| Ref | Expression |
|---|---|
| rexss | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3967 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | pm3.41 492 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐵)) | |
| 3 | 2 | pm4.71rd 562 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
| 4 | 3 | alexbii 1832 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
| 5 | 1, 4 | sylbi 217 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
| 6 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 7 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∈ wcel 2107 ∃wrex 3069 ⊆ wss 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3070 df-ss 3967 |
| This theorem is referenced by: oddnn02np1 16386 oddge22np1 16387 evennn02n 16388 evennn2n 16389 2lgslem1a 27436 omssubadd 34303 rexabso 44991 limsupmnfuzlem 45746 sbgoldbo 47779 |
| Copyright terms: Public domain | W3C validator |