![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexss | Structured version Visualization version GIF version |
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
rexss | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3820 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | pm4.71rd 560 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) |
3 | 2 | anbi1d 625 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑))) |
4 | anass 462 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
5 | 3, 4 | syl6bb 279 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
6 | 5 | rexbidv2 3257 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2166 ∃wrex 3117 ⊆ wss 3797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-rex 3122 df-in 3804 df-ss 3811 |
This theorem is referenced by: oddnn02np1 15445 oddge22np1 15446 evennn02n 15447 evennn2n 15448 2lgslem1a 25528 omssubadd 30906 limsupmnfuzlem 40752 sbgoldbo 42504 |
Copyright terms: Public domain | W3C validator |