| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rext0 | Structured version Visualization version GIF version | ||
| Description: Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| rext0.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| rext0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rext0.1 | . . . . 5 ⊢ 𝜑 | |
| 2 | 1 | notnoti 143 | . . . 4 ⊢ ¬ ¬ 𝜑 |
| 3 | 2 | ralf0 4459 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ 𝐴 = ∅) |
| 4 | 3 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ 𝐴 = ∅) |
| 5 | dfrex2 3059 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 6 | df-ne 2929 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 df-ral 3048 df-rex 3057 df-dif 3900 df-nul 4279 |
| This theorem is referenced by: n0abso 45009 |
| Copyright terms: Public domain | W3C validator |