Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rext0 Structured version   Visualization version   GIF version

Theorem rext0 44971
Description: Nonempty existential quantification of a theorem is true. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypothesis
Ref Expression
rext0.1 𝜑
Assertion
Ref Expression
rext0 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rext0
StepHypRef Expression
1 rext0.1 . . . . 5 𝜑
21notnoti 143 . . . 4 ¬ ¬ 𝜑
32ralf0 4459 . . 3 (∀𝑥𝐴 ¬ 𝜑𝐴 = ∅)
43notbii 320 . 2 (¬ ∀𝑥𝐴 ¬ 𝜑 ↔ ¬ 𝐴 = ∅)
5 dfrex2 3059 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
6 df-ne 2929 . 2 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
74, 5, 63bitr4i 303 1 (∃𝑥𝐴 𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wne 2928  wral 3047  wrex 3056  c0 4278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ne 2929  df-ral 3048  df-rex 3057  df-dif 3900  df-nul 4279
This theorem is referenced by:  n0abso  45009
  Copyright terms: Public domain W3C validator