Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0abso Structured version   Visualization version   GIF version

Theorem n0abso 45133
Description: Nonemptiness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
n0abso ((Tr 𝑀𝐴𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥𝑀 𝑥𝐴))
Distinct variable groups:   𝑥,𝑀   𝑥,𝐴

Proof of Theorem n0abso
StepHypRef Expression
1 rexabso 45126 . 2 ((Tr 𝑀𝐴𝑀) → (∃𝑥𝐴 ⊤ ↔ ∃𝑥𝑀 (𝑥𝐴 ∧ ⊤)))
2 tru 1545 . . . 4
32rext0 45095 . . 3 (∃𝑥𝐴 ⊤ ↔ 𝐴 ≠ ∅)
43bicomi 224 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥𝐴 ⊤)
52biantru 529 . . 3 (𝑥𝐴 ↔ (𝑥𝐴 ∧ ⊤))
65rexbii 3080 . 2 (∃𝑥𝑀 𝑥𝐴 ↔ ∃𝑥𝑀 (𝑥𝐴 ∧ ⊤))
71, 4, 63bitr4g 314 1 ((Tr 𝑀𝐴𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥𝑀 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wtru 1542  wcel 2113  wne 2929  wrex 3057  c0 4282  Tr wtr 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-v 3439  df-dif 3901  df-ss 3915  df-nul 4283  df-uni 4861  df-tr 5203
This theorem is referenced by:  modelac8prim  45149
  Copyright terms: Public domain W3C validator