| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > n0abso | Structured version Visualization version GIF version | ||
| Description: Nonemptiness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| n0abso | ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexabso 44959 | . 2 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 ⊤ ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ ⊤))) | |
| 2 | tru 1544 | . . . 4 ⊢ ⊤ | |
| 3 | 2 | rext0 44937 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ⊤ ↔ 𝐴 ≠ ∅) |
| 4 | 3 | bicomi 224 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 ⊤) |
| 5 | 2 | biantru 529 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ⊤)) |
| 6 | 5 | rexbii 3093 | . 2 ⊢ (∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ ⊤)) |
| 7 | 1, 4, 6 | 3bitr4g 314 | 1 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2939 ∃wrex 3069 ∅c0 4332 Tr wtr 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-v 3481 df-dif 3953 df-ss 3967 df-nul 4333 df-uni 4906 df-tr 5258 |
| This theorem is referenced by: modelac8prim 44982 |
| Copyright terms: Public domain | W3C validator |