| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > n0abso | Structured version Visualization version GIF version | ||
| Description: Nonemptiness is absolute for transitive models. Compare Example I.16.3 of [Kunen2] p. 96 and the following discussion. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| n0abso | ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexabso 44921 | . 2 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (∃𝑥 ∈ 𝐴 ⊤ ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ ⊤))) | |
| 2 | tru 1543 | . . . 4 ⊢ ⊤ | |
| 3 | 2 | rext0 44890 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ⊤ ↔ 𝐴 ≠ ∅) |
| 4 | 3 | bicomi 224 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 ⊤) |
| 5 | 2 | biantru 529 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ⊤)) |
| 6 | 5 | rexbii 3082 | . 2 ⊢ (∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑀 (𝑥 ∈ 𝐴 ∧ ⊤)) |
| 7 | 1, 4, 6 | 3bitr4g 314 | 1 ⊢ ((Tr 𝑀 ∧ 𝐴 ∈ 𝑀) → (𝐴 ≠ ∅ ↔ ∃𝑥 ∈ 𝑀 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊤wtru 1540 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 ∅c0 4306 Tr wtr 5226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-v 3459 df-dif 3927 df-ss 3941 df-nul 4307 df-uni 4881 df-tr 5227 |
| This theorem is referenced by: modelac8prim 44944 |
| Copyright terms: Public domain | W3C validator |