MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobidva Structured version   Visualization version   GIF version

Theorem rmobidva 3394
Description: Formula-building rule for restricted at-most-one quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) Avoid ax-6 1966, ax-7 2006, ax-12 2176. (Revised by Wolf Lammen, 23-Nov-2024.)
Hypothesis
Ref Expression
rmobidva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rmobidva (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rmobidva
StepHypRef Expression
1 rmobidva.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
21pm5.32da 579 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
32mobidv 2548 . 2 (𝜑 → (∃*𝑥(𝑥𝐴𝜓) ↔ ∃*𝑥(𝑥𝐴𝜒)))
4 df-rmo 3379 . 2 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
5 df-rmo 3379 . 2 (∃*𝑥𝐴 𝜒 ↔ ∃*𝑥(𝑥𝐴𝜒))
63, 4, 53bitr4g 314 1 (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  ∃*wmo 2537  ∃*wrmo 3378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-mo 2539  df-rmo 3379
This theorem is referenced by:  rmobidv  3396  brdom7disj  10572  phpreu  37612
  Copyright terms: Public domain W3C validator