MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reubidva Structured version   Visualization version   GIF version

Theorem reubidva 3314
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.)
Hypothesis
Ref Expression
reubidva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
reubidva (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reubidva
StepHypRef Expression
1 reubidva.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
21pm5.32da 578 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
32eubidv 2586 . 2 (𝜑 → (∃!𝑥(𝑥𝐴𝜓) ↔ ∃!𝑥(𝑥𝐴𝜒)))
4 df-reu 3070 . 2 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥(𝑥𝐴𝜓))
5 df-reu 3070 . 2 (∃!𝑥𝐴 𝜒 ↔ ∃!𝑥(𝑥𝐴𝜒))
63, 4, 53bitr4g 313 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  ∃!weu 2568  ∃!wreu 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-mo 2540  df-eu 2569  df-reu 3070
This theorem is referenced by:  reubidv  3315  reuxfrd  3678  reuxfr1d  3680  exfo  6963  f1ofveu  7250  zmax  12614  zbtwnre  12615  rebtwnz  12616  icoshftf1o  13135  divalgb  16041  1arith2  16557  ply1divalg2  25208  addsq2reu  26493  addsqn2reu  26494  addsqrexnreu  26495  2sqreultlem  26500  2sqreunnltlem  26503  frgr2wwlkeu  28592  numclwwlk2lem1  28641  numclwlk2lem2f1o  28644  pjhtheu2  29679  reuxfrdf  30740  xrsclat  31191  xrmulc1cn  31782  poimirlem25  35729  hdmap14lem14  39822  prproropreud  44849  quad1  44960  requad1  44962  requad2  44963  itscnhlinecirc02p  46019
  Copyright terms: Public domain W3C validator