| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rmobidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | eubidv 2580 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-reu 3357 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-reu 3357 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃!weu 2562 ∃!wreu 3354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 df-eu 2563 df-reu 3357 |
| This theorem is referenced by: reubidv 3374 reuxfrd 3722 reuxfr1d 3724 fdmeu 6920 exfo 7080 f1ofveu 7384 zmax 12911 zbtwnre 12912 rebtwnz 12913 icoshftf1o 13442 divalgb 16381 1arith2 16906 ply1divalg2 26051 addsq2reu 27358 addsqn2reu 27359 addsqrexnreu 27360 2sqreultlem 27365 2sqreunnltlem 27368 frgr2wwlkeu 30263 numclwwlk2lem1 30312 numclwlk2lem2f1o 30315 pjhtheu2 31352 reuxfrdf 32427 xrsclat 32956 xrmulc1cn 33927 ply1divalg3 35636 poimirlem25 37646 hdmap14lem14 41882 cantnf2 43321 prproropreud 47514 quad1 47625 requad1 47627 requad2 47628 isuspgrim0lem 47897 isuspgrim0 47898 isuspgrimlem 47899 itscnhlinecirc02p 48778 reueqbidva 48798 reuxfr1dd 48799 uptrlem1 49203 isinito2lem 49491 lanup 49634 ranup 49635 islmd 49658 iscmd 49659 |
| Copyright terms: Public domain | W3C validator |