![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
Ref | Expression |
---|---|
rmobidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobidva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | eubidv 2583 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-reu 3378 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-reu 3378 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ∃!weu 2565 ∃!wreu 3375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-mo 2537 df-eu 2566 df-reu 3378 |
This theorem is referenced by: reubidv 3395 reuxfrd 3756 reuxfr1d 3758 fdmeu 6964 exfo 7124 f1ofveu 7424 zmax 12984 zbtwnre 12985 rebtwnz 12986 icoshftf1o 13510 divalgb 16437 1arith2 16961 ply1divalg2 26192 addsq2reu 27498 addsqn2reu 27499 addsqrexnreu 27500 2sqreultlem 27505 2sqreunnltlem 27508 frgr2wwlkeu 30355 numclwwlk2lem1 30404 numclwlk2lem2f1o 30407 pjhtheu2 31444 reuxfrdf 32518 xrsclat 32995 xrmulc1cn 33890 ply1divalg3 35626 poimirlem25 37631 hdmap14lem14 41863 cantnf2 43314 prproropreud 47433 quad1 47544 requad1 47546 requad2 47547 isuspgrim0lem 47808 isuspgrim0 47809 isuspgrimlem 47811 itscnhlinecirc02p 48634 reuxfr1dd 48654 |
Copyright terms: Public domain | W3C validator |