![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
Ref | Expression |
---|---|
rmobidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobidva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32da 578 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | eubidv 2589 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-reu 3389 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-reu 3389 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃!weu 2571 ∃!wreu 3386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-eu 2572 df-reu 3389 |
This theorem is referenced by: reubidv 3406 reuxfrd 3770 reuxfr1d 3772 fdmeu 6978 exfo 7139 f1ofveu 7442 zmax 13010 zbtwnre 13011 rebtwnz 13012 icoshftf1o 13534 divalgb 16452 1arith2 16975 ply1divalg2 26198 addsq2reu 27502 addsqn2reu 27503 addsqrexnreu 27504 2sqreultlem 27509 2sqreunnltlem 27512 frgr2wwlkeu 30359 numclwwlk2lem1 30408 numclwlk2lem2f1o 30411 pjhtheu2 31448 reuxfrdf 32519 xrsclat 32994 xrmulc1cn 33876 ply1divalg3 35610 poimirlem25 37605 hdmap14lem14 41838 cantnf2 43287 prproropreud 47383 quad1 47494 requad1 47496 requad2 47497 isuspgrim0lem 47755 isuspgrim0 47756 isuspgrimlem 47758 itscnhlinecirc02p 48519 |
Copyright terms: Public domain | W3C validator |