| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rmobidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | eubidv 2579 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-reu 3346 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-reu 3346 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃!weu 2561 ∃!wreu 3343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-reu 3346 |
| This theorem is referenced by: reubidv 3363 reuxfrd 3710 reuxfr1d 3712 fdmeu 6883 exfo 7043 f1ofveu 7347 zmax 12864 zbtwnre 12865 rebtwnz 12866 icoshftf1o 13395 divalgb 16333 1arith2 16858 ply1divalg2 26060 addsq2reu 27367 addsqn2reu 27368 addsqrexnreu 27369 2sqreultlem 27374 2sqreunnltlem 27377 frgr2wwlkeu 30289 numclwwlk2lem1 30338 numclwlk2lem2f1o 30341 pjhtheu2 31378 reuxfrdf 32453 xrsclat 32978 xrmulc1cn 33899 ply1divalg3 35617 poimirlem25 37627 hdmap14lem14 41863 cantnf2 43301 prproropreud 47497 quad1 47608 requad1 47610 requad2 47611 isuspgrim0lem 47881 isuspgrim0 47882 isuspgrimlem 47883 itscnhlinecirc02p 48774 reueqbidva 48794 reuxfr1dd 48795 uptrlem1 49199 isinito2lem 49487 lanup 49630 ranup 49631 islmd 49654 iscmd 49655 |
| Copyright terms: Public domain | W3C validator |