| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rmobidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | eubidv 2585 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-reu 3360 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-reu 3360 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃!weu 2567 ∃!wreu 3357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 df-eu 2568 df-reu 3360 |
| This theorem is referenced by: reubidv 3377 reuxfrd 3731 reuxfr1d 3733 fdmeu 6934 exfo 7094 f1ofveu 7397 zmax 12959 zbtwnre 12960 rebtwnz 12961 icoshftf1o 13489 divalgb 16421 1arith2 16946 ply1divalg2 26094 addsq2reu 27401 addsqn2reu 27402 addsqrexnreu 27403 2sqreultlem 27408 2sqreunnltlem 27411 frgr2wwlkeu 30254 numclwwlk2lem1 30303 numclwlk2lem2f1o 30306 pjhtheu2 31343 reuxfrdf 32418 xrsclat 32949 xrmulc1cn 33907 ply1divalg3 35610 poimirlem25 37615 hdmap14lem14 41846 cantnf2 43296 prproropreud 47471 quad1 47582 requad1 47584 requad2 47585 isuspgrim0lem 47854 isuspgrim0 47855 isuspgrimlem 47856 itscnhlinecirc02p 48713 reuxfr1dd 48733 isinito2lem 49331 lanup 49463 ranup 49464 islmd 49483 iscmd 49484 |
| Copyright terms: Public domain | W3C validator |