| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rmobidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | eubidv 2583 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-reu 3348 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-reu 3348 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∃!weu 2565 ∃!wreu 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2537 df-eu 2566 df-reu 3348 |
| This theorem is referenced by: reubidv 3363 reuxfrd 3703 reuxfr1d 3705 fdmeu 6887 exfo 7047 f1ofveu 7349 zmax 12849 zbtwnre 12850 rebtwnz 12851 icoshftf1o 13381 divalgb 16322 1arith2 16847 ply1divalg2 26091 addsq2reu 27398 addsqn2reu 27399 addsqrexnreu 27400 2sqreultlem 27405 2sqreunnltlem 27408 frgr2wwlkeu 30328 numclwwlk2lem1 30377 numclwlk2lem2f1o 30380 pjhtheu2 31417 reuxfrdf 32491 xrsclat 33021 xrmulc1cn 34015 ply1divalg3 35758 poimirlem25 37758 hdmap14lem14 42053 cantnf2 43482 prproropreud 47671 quad1 47782 requad1 47784 requad2 47785 isuspgrim0lem 48055 isuspgrim0 48056 isuspgrimlem 48057 itscnhlinecirc02p 48947 reueqbidva 48967 reuxfr1dd 48968 uptrlem1 49371 isinito2lem 49659 lanup 49802 ranup 49803 islmd 49826 iscmd 49827 |
| Copyright terms: Public domain | W3C validator |