Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
Ref | Expression |
---|---|
reubidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubidva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32da 578 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
3 | 2 | eubidv 2586 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | df-reu 3070 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
5 | df-reu 3070 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃!weu 2568 ∃!wreu 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 df-eu 2569 df-reu 3070 |
This theorem is referenced by: reubidv 3315 reuxfrd 3678 reuxfr1d 3680 exfo 6963 f1ofveu 7250 zmax 12614 zbtwnre 12615 rebtwnz 12616 icoshftf1o 13135 divalgb 16041 1arith2 16557 ply1divalg2 25208 addsq2reu 26493 addsqn2reu 26494 addsqrexnreu 26495 2sqreultlem 26500 2sqreunnltlem 26503 frgr2wwlkeu 28592 numclwwlk2lem1 28641 numclwlk2lem2f1o 28644 pjhtheu2 29679 reuxfrdf 30740 xrsclat 31191 xrmulc1cn 31782 poimirlem25 35729 hdmap14lem14 39822 prproropreud 44849 quad1 44960 requad1 44962 requad2 44963 itscnhlinecirc02p 46019 |
Copyright terms: Public domain | W3C validator |