| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rmobidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | eubidv 2581 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-reu 3347 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-reu 3347 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∃!weu 2563 ∃!wreu 3344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 df-eu 2564 df-reu 3347 |
| This theorem is referenced by: reubidv 3362 reuxfrd 3702 reuxfr1d 3704 fdmeu 6873 exfo 7033 f1ofveu 7335 zmax 12838 zbtwnre 12839 rebtwnz 12840 icoshftf1o 13369 divalgb 16310 1arith2 16835 ply1divalg2 26066 addsq2reu 27373 addsqn2reu 27374 addsqrexnreu 27375 2sqreultlem 27380 2sqreunnltlem 27383 frgr2wwlkeu 30299 numclwwlk2lem1 30348 numclwlk2lem2f1o 30351 pjhtheu2 31388 reuxfrdf 32462 xrsclat 32984 xrmulc1cn 33935 ply1divalg3 35678 poimirlem25 37685 hdmap14lem14 41920 cantnf2 43358 prproropreud 47540 quad1 47651 requad1 47653 requad2 47654 isuspgrim0lem 47924 isuspgrim0 47925 isuspgrimlem 47926 itscnhlinecirc02p 48817 reueqbidva 48837 reuxfr1dd 48838 uptrlem1 49242 isinito2lem 49530 lanup 49673 ranup 49674 islmd 49697 iscmd 49698 |
| Copyright terms: Public domain | W3C validator |