| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reubidva | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
| Ref | Expression |
|---|---|
| rmobidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reubidva | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobidva.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 3 | 2 | eubidv 2579 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | df-reu 3355 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 5 | df-reu 3355 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃!weu 2561 ∃!wreu 3352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-eu 2562 df-reu 3355 |
| This theorem is referenced by: reubidv 3372 reuxfrd 3719 reuxfr1d 3721 fdmeu 6917 exfo 7077 f1ofveu 7381 zmax 12904 zbtwnre 12905 rebtwnz 12906 icoshftf1o 13435 divalgb 16374 1arith2 16899 ply1divalg2 26044 addsq2reu 27351 addsqn2reu 27352 addsqrexnreu 27353 2sqreultlem 27358 2sqreunnltlem 27361 frgr2wwlkeu 30256 numclwwlk2lem1 30305 numclwlk2lem2f1o 30308 pjhtheu2 31345 reuxfrdf 32420 xrsclat 32949 xrmulc1cn 33920 ply1divalg3 35629 poimirlem25 37639 hdmap14lem14 41875 cantnf2 43314 prproropreud 47510 quad1 47621 requad1 47623 requad2 47624 isuspgrim0lem 47893 isuspgrim0 47894 isuspgrimlem 47895 itscnhlinecirc02p 48774 reueqbidva 48794 reuxfr1dd 48795 uptrlem1 49199 isinito2lem 49487 lanup 49630 ranup 49631 islmd 49654 iscmd 49655 |
| Copyright terms: Public domain | W3C validator |