MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reubidva Structured version   Visualization version   GIF version

Theorem reubidva 3404
Description: Formula-building rule for restricted existential uniqueness quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.)
Hypothesis
Ref Expression
rmobidva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
reubidva (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reubidva
StepHypRef Expression
1 rmobidva.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
21pm5.32da 578 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
32eubidv 2589 . 2 (𝜑 → (∃!𝑥(𝑥𝐴𝜓) ↔ ∃!𝑥(𝑥𝐴𝜒)))
4 df-reu 3389 . 2 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥(𝑥𝐴𝜓))
5 df-reu 3389 . 2 (∃!𝑥𝐴 𝜒 ↔ ∃!𝑥(𝑥𝐴𝜒))
63, 4, 53bitr4g 314 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  ∃!weu 2571  ∃!wreu 3386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-eu 2572  df-reu 3389
This theorem is referenced by:  reubidv  3406  reuxfrd  3770  reuxfr1d  3772  fdmeu  6978  exfo  7139  f1ofveu  7442  zmax  13010  zbtwnre  13011  rebtwnz  13012  icoshftf1o  13534  divalgb  16452  1arith2  16975  ply1divalg2  26198  addsq2reu  27502  addsqn2reu  27503  addsqrexnreu  27504  2sqreultlem  27509  2sqreunnltlem  27512  frgr2wwlkeu  30359  numclwwlk2lem1  30408  numclwlk2lem2f1o  30411  pjhtheu2  31448  reuxfrdf  32519  xrsclat  32994  xrmulc1cn  33876  ply1divalg3  35610  poimirlem25  37605  hdmap14lem14  41838  cantnf2  43287  prproropreud  47383  quad1  47494  requad1  47496  requad2  47497  isuspgrim0lem  47755  isuspgrim0  47756  isuspgrimlem  47758  itscnhlinecirc02p  48519
  Copyright terms: Public domain W3C validator