| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2reu2rex | Structured version Visualization version GIF version | ||
| Description: Double restricted existential uniqueness, analogous to 2eu2ex 2642. (Contributed by Alexander van der Vekens, 25-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2reu2rex | ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurex 3383 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | |
| 2 | reurex 3383 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | 2 | reximi 3083 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3069 ∃!wreu 3377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-eu 2568 df-rex 3070 df-rmo 3379 df-reu 3380 |
| This theorem is referenced by: 2reu1 3896 2sqreultblem 27493 2sqreunnltblem 27496 |
| Copyright terms: Public domain | W3C validator |