MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrmow Structured version   Visualization version   GIF version

Theorem cbvrmow 3352
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo 3357 with a disjoint variable condition, which does not require ax-10 2141, ax-13 2371. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 23-May-2024.)
Hypotheses
Ref Expression
cbvrmow.1 𝑦𝜑
cbvrmow.2 𝑥𝜓
cbvrmow.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrmow (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrmow
StepHypRef Expression
1 nfv 1922 . . . 4 𝑦 𝑥𝐴
2 cbvrmow.1 . . . 4 𝑦𝜑
31, 2nfan 1907 . . 3 𝑦(𝑥𝐴𝜑)
4 nfv 1922 . . . 4 𝑥 𝑦𝐴
5 cbvrmow.2 . . . 4 𝑥𝜓
64, 5nfan 1907 . . 3 𝑥(𝑦𝐴𝜓)
7 eleq1w 2820 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
8 cbvrmow.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
97, 8anbi12d 634 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
103, 6, 9cbvmow 2602 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∃*𝑦(𝑦𝐴𝜓))
11 df-rmo 3069 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
12 df-rmo 3069 . 2 (∃*𝑦𝐴 𝜓 ↔ ∃*𝑦(𝑦𝐴𝜓))
1310, 11, 123bitr4i 306 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wnf 1791  wcel 2110  ∃*wmo 2537  ∃*wrmo 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-11 2158  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-mo 2539  df-clel 2816  df-rmo 3069
This theorem is referenced by:  cbvdisj  5028
  Copyright terms: Public domain W3C validator