![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmov | Structured version Visualization version GIF version |
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmov | ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3372 | . 2 ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 3474 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | mobii 2538 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 278 | 1 ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∃*wmo 2528 ∃*wrmo 3371 Vcvv 3470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-rmo 3372 df-v 3472 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |