MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmov Structured version   Visualization version   GIF version

Theorem rmov 3449
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmov (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)

Proof of Theorem rmov
StepHypRef Expression
1 df-rmo 3071 . 2 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3426 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43mobii 2548 . 2 (∃*𝑥𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 277 1 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  ∃*wmo 2538  ∃*wrmo 3066  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-rmo 3071  df-v 3424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator