MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmov Structured version   Visualization version   GIF version

Theorem rmov 3480
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmov (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)

Proof of Theorem rmov
StepHypRef Expression
1 df-rmo 3356 . 2 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3454 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43mobii 2542 . 2 (∃*𝑥𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 278 1 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  ∃*wmo 2532  ∃*wrmo 3355  Vcvv 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-rmo 3356  df-v 3452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator